Suppr超能文献

次扩散方程分数阶导数阶数的确定

Determination of the Order of Fractional Derivative for Subdiffusion Equations.

作者信息

Ashurov Ravshan, Umarov Sabir

机构信息

Institute of Mathematics, Uzbekistan Academy of Science Tashkent, 81 Mirzo Ulugbek str., 100170 Uzbekistan.

Department of Mathematics, University of New Haven, 300 Boston Post Road, West Haven, CT 06516 USA.

出版信息

Fract Calc Appl Anal. 2020;23(6):1647-1662. doi: 10.1515/fca-2020-0081. Epub 2020 Dec 31.

Abstract

The identification of the right order of the equation in applied fractional modeling plays an important role. In this paper we consider an inverse problem for determining the order of time fractional derivative in a subdiffusion equation with an arbitrary second order elliptic differential operator. We prove that the additional information about the solution at a fixed time instant at a monitoring location, as "the observation data", identifies uniquely the order of the fractional derivative.

摘要

在应用分数阶建模中确定方程的正确阶数起着重要作用。在本文中,我们考虑一个反问题,即确定具有任意二阶椭圆型微分算子的次扩散方程中时间分数阶导数的阶数。我们证明,在监测位置固定时刻关于解的附加信息,即“观测数据”,能唯一确定分数阶导数的阶数。

相似文献

1
Determination of the Order of Fractional Derivative for Subdiffusion Equations.次扩散方程分数阶导数阶数的确定
Fract Calc Appl Anal. 2020;23(6):1647-1662. doi: 10.1515/fca-2020-0081. Epub 2020 Dec 31.
8
Subdiffusion in a system with thin membranes.具有薄膜的系统中的亚扩散。
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021123. doi: 10.1103/PhysRevE.86.021123. Epub 2012 Aug 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验