Suppr超能文献

几何散射注意力网络

GEOMETRIC SCATTERING ATTENTION NETWORKS.

作者信息

Min Yimeng, Wenkel Frederik, Wolf Guy

机构信息

Department of Computer Science & Operational Research, Université de Montréal.

Mila - Quebec AI Institute, Montreal, QC, Canada.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021:8518-8522. doi: 10.1109/icassp39728.2021.9414557. Epub 2021 May 13.

Abstract

Geometric scattering has recently gained recognition in graph representation learning, and recent work has shown that integrating scattering features in graph convolution networks (GCNs) can alleviate the typical oversmoothing of features in node representation learning. However, scattering often relies on handcrafted design, requiring careful selection of frequency bands via a cascade of wavelet transforms, as well as an effective weight sharing scheme to combine low- and band-pass information. Here, we introduce a new attention-based architecture to produce adaptive task-driven node representations by implicitly learning node-wise weights for combining multiple scattering and GCN channels in the network. We show the resulting geometric scattering attention network (GSAN) outperforms previous networks in semi-supervised node classification, while also enabling a spectral study of extracted information by examining node-wise attention weights.

摘要

几何散射最近在图表示学习中得到了认可,最近的工作表明,在图卷积网络(GCN)中集成散射特征可以缓解节点表示学习中特征典型的过平滑问题。然而,散射通常依赖于手工设计,需要通过一系列小波变换仔细选择频带,以及一种有效的权重共享方案来组合低通和带通信息。在这里,我们引入了一种新的基于注意力的架构,通过隐式学习网络中用于组合多个散射和GCN通道的节点权重,来生成自适应任务驱动的节点表示。我们表明,由此产生的几何散射注意力网络(GSAN)在半监督节点分类方面优于以前的网络,同时还通过检查节点注意力权重对提取的信息进行频谱研究。

相似文献

1
GEOMETRIC SCATTERING ATTENTION NETWORKS.几何散射注意力网络
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021:8518-8522. doi: 10.1109/icassp39728.2021.9414557. Epub 2021 May 13.
4
DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS.基于数据驱动的图神经网络几何散射模块学习
IEEE Int Workshop Mach Learn Signal Process. 2021 Oct;2021. doi: 10.1109/mlsp52302.2021.9596169. Epub 2021 Nov 15.
9
Feature-Attention Graph Convolutional Networks for Noise Resilient Learning.用于抗噪声学习的特征注意力图卷积网络
IEEE Trans Cybern. 2022 Aug;52(8):7719-7731. doi: 10.1109/TCYB.2022.3143798. Epub 2022 Jul 19.

本文引用的文献

2
Graph Neural Networks With Convolutional ARMA Filters.基于卷积 ARMA 滤波器的图神经网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3496-3507. doi: 10.1109/TPAMI.2021.3054830. Epub 2022 Jun 3.
3
Invariant scattering convolution networks.不变散射卷积网络。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1872-86. doi: 10.1109/TPAMI.2012.230.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验