Suppr超能文献

在酵母中模拟 rDNA 内含子如何减缓生长速度并提高地衣的干燥耐受性。

Modeling in yeast how rDNA introns slow growth and increase desiccation tolerance in lichens.

机构信息

Department of Biology, Duke University, Durham, NC 27708, USA.

Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

G3 (Bethesda). 2021 Oct 19;11(11). doi: 10.1093/g3journal/jkab279.

Abstract

We connect ribosome biogenesis to desiccation tolerance in lichens, widespread symbioses between specialized fungi (mycobionts) and unicellular phototrophs. We test whether the introns present in the nuclear ribosomal DNA of lichen mycobionts contribute to their anhydrobiosis. Self-splicing introns are found in the rDNA of several eukaryotic microorganisms, but most introns populating lichen rDNA are unable to self-splice, being either catalytically impaired group I introns, or spliceosomal introns ectopically present in rDNA. Although the mycobiont's splicing machinery removes all introns from rRNA, Northern analysis indicates delayed post-transcriptional removal during rRNA processing, suggesting interference with ribosome assembly. To study the effects of lichen introns in a model system, we used CRISPR to introduce a spliceosomal rDNA intron from the lichen fungus Cladonia grayi into all nuclear rDNA copies of Saccharomyces cerevisiae, which lacks rDNA introns. Three intron-bearing yeast mutants were constructed with the intron inserted either in the 18S rRNA genes, the 25S rRNA genes, or in both. The mutants removed the introns correctly but had half the rDNA genes of the wildtype, grew 4.4-6 times slower, and were 40-1700 times more desiccation tolerant depending on intron position and number. Intracellular trehalose, a disaccharide implicated in desiccation tolerance, was detected at low concentration. Our data suggest that the interference of the splicing machinery with ribosome assembly leads to fewer ribosomes and proteins and to slow growth and increased desiccation tolerance in the yeast mutants. The relevance of these findings for slow growth and desiccation tolerance in lichens is discussed.

摘要

我们将核糖体生物发生与地衣的耐旱性联系起来,地衣是专门真菌(菌根真菌)和单细胞光合生物之间广泛存在的共生体。我们测试了菌根真菌核核糖体 DNA 中存在的内含子是否有助于它们的抗干旱。自我剪接内含子存在于几种真核微生物的 rDNA 中,但大多数填充地衣 rDNA 的内含子不能自我剪接,要么是催化受损的 I 组内含子,要么是外显子存在于 rDNA 中的剪接体内含子。尽管菌根真菌的剪接机制从 rRNA 中去除了所有内含子,但 Northern 分析表明,在 rRNA 加工过程中存在转录后延迟去除,这表明与核糖体组装存在干扰。为了在模型系统中研究地衣内含子的影响,我们使用 CRISPR 将地衣真菌 Cladonia grayi 的剪接体 rDNA 内含子引入酿酒酵母(Saccharomyces cerevisiae)的所有核 rDNA 拷贝中,酿酒酵母缺乏 rDNA 内含子。构建了三个携带内含子的酵母突变体,内含子分别插入 18S rRNA 基因、25S rRNA 基因或两者都插入。突变体正确地去除了内含子,但野生型的 rDNA 基因减少了一半,生长速度慢了 4.4-6 倍,并且取决于内含子的位置和数量,耐旱性提高了 40-1700 倍。细胞内海藻糖,一种与耐旱性有关的二糖,被检测到低浓度。我们的数据表明,剪接机制与核糖体组装的干扰导致酵母突变体中核糖体和蛋白质减少,生长缓慢,耐旱性增强。这些发现对地衣生长缓慢和耐旱性的相关性进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd90/8527467/74c6876da538/jkab279f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验