Department of Genome Sciences, University of Washington, Seattle, Washington 98195.
Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195.
Genetics. 2019 Sep;213(1):229-249. doi: 10.1534/genetics.119.302351. Epub 2019 Jul 10.
The complex structure and repetitive nature of eukaryotic ribosomal DNA (rDNA) is a challenge for genome assembly, thus the consequences of sequence variation in rDNA remain unexplored. However, renewed interest in the role that rDNA variation may play in diverse cellular functions, aside from ribosome production, highlights the need for a method that would permit genetic manipulation of the rDNA. Here, we describe a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategy to edit the rDNA locus in the budding yeast , developed independently but similar to one developed by others. Using this approach, we modified the endogenous rDNA origin of replication in each repeat by deleting or replacing its consensus sequence. We characterized the transformants that have successfully modified their rDNA locus and propose a mechanism for how CRISPR/Cas9-mediated editing of the rDNA occurs. In addition, we carried out extended growth and life span experiments to investigate the long-term consequences that altering the rDNA origin of replication have on cellular health. We find that long-term growth of the edited clones results in faster-growing suppressors that have acquired segmental aneusomy of the rDNA-containing region of chromosome XII or aneuploidy of chromosomes XII, II, or IV. Furthermore, we find that all edited isolates suffer a reduced life span, irrespective of their levels of extrachromosomal rDNA circles. Our work demonstrates that it is possible to quickly, efficiently, and homogeneously edit the rDNA origin via CRISPR/Cas9.
真核生物核糖体 DNA(rDNA) 的复杂结构和重复性质对基因组组装构成了挑战,因此 rDNA 序列变异的后果仍未得到探索。然而,人们对 rDNA 变异可能在核糖体产生以外的多种细胞功能中发挥的作用重新产生了兴趣,这凸显了需要一种方法来允许对 rDNA 进行遗传操作。在这里,我们描述了一种基于成簇规律间隔短回文重复序列 (CRISPR)/Cas9 的策略,用于编辑芽殖酵母中的 rDNA 基因座,该策略是独立开发的,但与其他人开发的策略相似。使用这种方法,我们通过删除或替换其共有序列来修饰每个重复中的内源性 rDNA 复制起点。我们对成功修饰其 rDNA 基因座的转化体进行了表征,并提出了 CRISPR/Cas9 介导的 rDNA 编辑发生的机制。此外,我们进行了扩展的生长和寿命实验,以研究改变 rDNA 复制起点对细胞健康的长期后果。我们发现,编辑克隆的长期生长导致更快生长的抑制剂,这些抑制剂获得了染色体 XII 中包含 rDNA 区域的片段非整倍性或染色体 XII、II 或 IV 的非整倍性。此外,我们发现所有编辑的分离株的寿命都缩短了,而不管它们的染色体外 rDNA 环的水平如何。我们的工作表明,通过 CRISPR/Cas9 可以快速、高效和均匀地编辑 rDNA 起点。