Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Forestry and Grassland Administration, Zhengzhou 450003, China.
G3 (Bethesda). 2021 Aug 7;11(8). doi: 10.1093/g3journal/jkab188.
Unreduced gametes (2n gametes), possessing double the haploid genome, whatever ploidy that happens to be, are a common source of ploidy variation in plant populations. First and second division restitution (FDR and SDR) are the dominant mechanisms of 2n gamete production; all else being equal, FDR gametes have a higher degree of heterozygosity, thus they are advantageous in breeding. The discrimination of these mechanisms from the consequence of hybridization is challenging, especially in higher polyploids, and usually requires information on centromere location. In this study, we propose a genotyping-based strategy to uncover the mechanisms of 2n gamete formation in progeny that has a higher ploidy than its parents. Simulation of 2n gamete production revealed that FDR and SDR pathways can be discriminated based on allele transmission patterns alone without information on centromere location. We applied this strategy to study the formation mechanism of a nonaploid Diospyros kaki 'Akiou', which was bred via hybridization between D. kaki hexaploid cultivars. The result demonstrated that 'Akiou' was derived from the fertilization of a normal female gamete by a 2n male gamete and that this 2n gamete was produced through FDR. Consequently, the distinct duplex transmission pattern in the FDR gamete enabled us to infer the genomic characteristics of polyploid persimmon. The method could be tested only for the plant being polypoid, which allows for the ability to discriminate causes of 2n gamete formation using allele dosage in progeny, and will be useful in future studies of polyploid genomics.
未减数配子(2n 配子),拥有二倍于单倍体基因组的染色体数,无论其倍性如何,是植物群体中倍性变异的常见来源。第一次和第二次减数分裂后恢复(FDR 和 SDR)是产生 2n 配子的主要机制;在其他条件相同的情况下,FDR 配子具有更高程度的杂合性,因此在繁殖中具有优势。这些机制与杂交的后果区分开来具有挑战性,特别是在较高的多倍体中,通常需要有关着丝粒位置的信息。在这项研究中,我们提出了一种基于基因型的策略,以揭示其亲本具有较高倍性的后代中 2n 配子形成的机制。2n 配子产生的模拟表明,仅基于等位基因传递模式而无需有关着丝粒位置的信息,就可以区分 FDR 和 SDR 途径。我们应用此策略来研究非整倍体 Diospyros kaki 'Akiou'的形成机制,该非整倍体是通过 D. kaki 六倍体品种之间的杂交育成的。结果表明,'Akiou'是由正常雌性配子与 2n 雄性配子受精产生的,而这种 2n 配子是通过 FDR 产生的。因此,FDR 配子中明显的双链传递模式使我们能够推断出多倍体柿子的基因组特征。该方法只能针对多倍体植物进行测试,该方法允许使用后代中的等位基因剂量来区分 2n 配子形成的原因,并且在未来的多倍体基因组学研究中将会很有用。