Suppr超能文献

解析转录组全基因组关联研究中的遗传特征选择和聚合。

Disentangling genetic feature selection and aggregation in transcriptome-wide association studies.

机构信息

Department of Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.

Department of Mathematics & Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada.

出版信息

Genetics. 2022 Feb 4;220(2). doi: 10.1093/genetics/iyab216.

Abstract

The success of transcriptome-wide association studies (TWAS) has led to substantial research toward improving the predictive accuracy of its core component of genetically regulated expression (GReX). GReX links expression information with genotype and phenotype by playing two roles simultaneously: it acts as both the outcome of the genotype-based predictive models (for predicting expressions) and the linear combination of genotypes (as the predicted expressions) for association tests. From the perspective of machine learning (considering SNPs as features), these are actually two separable steps-feature selection and feature aggregation-which can be independently conducted. In this study, we show that the single approach of GReX limits the adaptability of TWAS methodology and practice. By conducting simulations and real data analysis, we demonstrate that disentangled protocols adapting straightforward approaches for feature selection (e.g., simple marker test) and aggregation (e.g., kernel machines) outperform the standard TWAS protocols that rely on GReX. Our development provides more powerful novel tools for conducting TWAS. More importantly, our characterization of the exact nature of TWAS suggests that, instead of questionably binding two distinct steps into the same statistical form (GReX), methodological research focusing on optimal combinations of feature selection and aggregation approaches will bring higher power to TWAS protocols.

摘要

全转录组关联研究(TWAS)的成功促使人们大量研究如何提高其核心组成部分——遗传调控表达(GReX)的预测准确性。GReX 通过同时发挥两个作用将表达信息与基因型和表型联系起来:它既是基于基因型的预测模型(用于预测表达)的结果,也是关联测试中基因型的线性组合(作为预测的表达)。从机器学习的角度来看(将 SNPs 视为特征),这些实际上是两个可分离的步骤——特征选择和特征聚合——可以独立进行。在这项研究中,我们表明,GReX 的单一方法限制了 TWAS 方法和实践的适应性。通过进行模拟和真实数据分析,我们证明了分离协议适应简单的特征选择方法(例如,简单标记测试)和聚合方法(例如,核机器)优于依赖 GReX 的标准 TWAS 协议。我们的开发为进行 TWAS 提供了更强大的新工具。更重要的是,我们对 TWAS 的确切性质的描述表明,与其将两个不同的步骤有问题地绑定到相同的统计形式(GReX)中,不如将方法研究重点放在特征选择和聚合方法的最佳组合上,这将为 TWAS 协议带来更高的功效。

相似文献

3
Statistical power of transcriptome-wide association studies.
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.
6
Power analysis of transcriptome-wide association study: Implications for practical protocol choice.
PLoS Genet. 2021 Feb 26;17(2):e1009405. doi: 10.1371/journal.pgen.1009405. eCollection 2021 Feb.
9
Multitrait transcriptome-wide association study (TWAS) tests.
Genet Epidemiol. 2021 Sep;45(6):563-576. doi: 10.1002/gepi.22391. Epub 2021 Jun 3.

引用本文的文献

1
Autoencoder-Transformed Transcriptome Improves Genotype-Phenotype Association Studies.
IEEE Trans Comput Biol Bioinform. 2025 Jul-Aug;22(4):1703-1715. doi: 10.1109/TCBBIO.2025.3568376.
2
TIPS: a novel pathway-guided joint model for transcriptome-wide association studies.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae587.
4
Multiome-wide Association Studies: Novel Approaches for Understanding Diseases.
Genomics Proteomics Bioinformatics. 2024 Dec 3;22(5). doi: 10.1093/gpbjnl/qzae077.
5
COFFEE: consensus single cell-type specific inference for gene regulatory networks.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae457.
6
Leveraging Random Effects in Cistrome-Wide Association Studies for Decoding the Genetic Determinants of Prostate Cancer.
Adv Sci (Weinh). 2024 Sep;11(36):e2400815. doi: 10.1002/advs.202400815. Epub 2024 Aug 5.
7
Optimal variable identification for accurate detection of causal expression Quantitative Trait Loci with applications in heart-related diseases.
Comput Struct Biotechnol J. 2024 Jun 3;23:2478-2486. doi: 10.1016/j.csbj.2024.05.050. eCollection 2024 Dec.
10
An expression-directed linear mixed model discovering low-effect genetic variants.
Genetics. 2024 Apr 3;226(4). doi: 10.1093/genetics/iyae018.

本文引用的文献

1
Leveraging gene co-regulation to identify gene sets enriched for disease heritability.
Am J Hum Genet. 2022 Mar 3;109(3):393-404. doi: 10.1016/j.ajhg.2022.01.005. Epub 2022 Feb 1.
2
Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia.
PLoS Genet. 2021 Apr 2;17(4):e1009482. doi: 10.1371/journal.pgen.1009482. eCollection 2021 Apr.
3
MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies.
PLoS Genet. 2021 Mar 8;17(3):e1009398. doi: 10.1371/journal.pgen.1009398. eCollection 2021 Mar.
4
Power analysis of transcriptome-wide association study: Implications for practical protocol choice.
PLoS Genet. 2021 Feb 26;17(2):e1009405. doi: 10.1371/journal.pgen.1009405. eCollection 2021 Feb.
6
Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization.
Am J Hum Genet. 2021 Feb 4;108(2):240-256. doi: 10.1016/j.ajhg.2020.12.006.
9
A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis.
Nat Genet. 2020 Nov;52(11):1239-1246. doi: 10.1038/s41588-020-0706-2. Epub 2020 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验