Department of Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
Department of Mathematics & Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada.
Genetics. 2022 Feb 4;220(2). doi: 10.1093/genetics/iyab216.
The success of transcriptome-wide association studies (TWAS) has led to substantial research toward improving the predictive accuracy of its core component of genetically regulated expression (GReX). GReX links expression information with genotype and phenotype by playing two roles simultaneously: it acts as both the outcome of the genotype-based predictive models (for predicting expressions) and the linear combination of genotypes (as the predicted expressions) for association tests. From the perspective of machine learning (considering SNPs as features), these are actually two separable steps-feature selection and feature aggregation-which can be independently conducted. In this study, we show that the single approach of GReX limits the adaptability of TWAS methodology and practice. By conducting simulations and real data analysis, we demonstrate that disentangled protocols adapting straightforward approaches for feature selection (e.g., simple marker test) and aggregation (e.g., kernel machines) outperform the standard TWAS protocols that rely on GReX. Our development provides more powerful novel tools for conducting TWAS. More importantly, our characterization of the exact nature of TWAS suggests that, instead of questionably binding two distinct steps into the same statistical form (GReX), methodological research focusing on optimal combinations of feature selection and aggregation approaches will bring higher power to TWAS protocols.
全转录组关联研究(TWAS)的成功促使人们大量研究如何提高其核心组成部分——遗传调控表达(GReX)的预测准确性。GReX 通过同时发挥两个作用将表达信息与基因型和表型联系起来:它既是基于基因型的预测模型(用于预测表达)的结果,也是关联测试中基因型的线性组合(作为预测的表达)。从机器学习的角度来看(将 SNPs 视为特征),这些实际上是两个可分离的步骤——特征选择和特征聚合——可以独立进行。在这项研究中,我们表明,GReX 的单一方法限制了 TWAS 方法和实践的适应性。通过进行模拟和真实数据分析,我们证明了分离协议适应简单的特征选择方法(例如,简单标记测试)和聚合方法(例如,核机器)优于依赖 GReX 的标准 TWAS 协议。我们的开发为进行 TWAS 提供了更强大的新工具。更重要的是,我们对 TWAS 的确切性质的描述表明,与其将两个不同的步骤有问题地绑定到相同的统计形式(GReX)中,不如将方法研究重点放在特征选择和聚合方法的最佳组合上,这将为 TWAS 协议带来更高的功效。