Suppr超能文献

通过混合模型实现 eQTL 整合分析中总遗传效应的同时检验和估计。

Simultaneous test and estimation of total genetic effect in eQTL integrative analysis through mixed models.

机构信息

Department of Biostatistics at Xuzhou Medical University, China.

Department of Biostatistics at Nanjing Medical University, China.

出版信息

Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbac038.

Abstract

Integration of expression quantitative trait loci (eQTL) into genome-wide association studies (GWASs) is a promising manner to reveal functional roles of associated single-nucleotide polymorphisms (SNPs) in complex phenotypes and has become an active research field in post-GWAS era. However, how to efficiently incorporate eQTL mapping study into GWAS for prioritization of causal genes remains elusive. We herein proposed a novel method termed as Mixed transcriptome-wide association studies (TWAS) and mediated Variance estimation (MTV) by modeling the effects of cis-SNPs of a gene as a function of eQTL. MTV formulates the integrative method and TWAS within a unified framework via mixed models and therefore includes many prior methods/tests as special cases. We further justified MTV from another two statistical perspectives of mediation analysis and two-stage Mendelian randomization. Relative to existing methods, MTV is superior for pronounced features including the processing of direct effects of cis-SNPs on phenotypes, the powerful likelihood ratio test for assessment of joint effects of cis-SNPs and genetically regulated gene expression (GReX), two useful quantities to measure relative genetic contributions of GReX and cis-SNPs to phenotypic variance, and the computationally efferent parameter expansion expectation maximum algorithm. With extensive simulations, we identified that MTV correctly controlled the type I error in joint evaluation of the total genetic effect and proved more powerful to discover true association signals across various scenarios compared to existing methods. We finally applied MTV to 41 complex traits/diseases available from three GWASs and discovered many new associated genes that had otherwise been missed by existing methods. We also revealed that a small but substantial fraction of phenotypic variation was mediated by GReX. Overall, MTV constructs a robust and realistic modeling foundation for integrative omics analysis and has the advantage of offering more attractive biological interpretations of GWAS results.

摘要

将表达数量性状基因座 (eQTL) 整合到全基因组关联研究 (GWAS) 中是揭示相关单核苷酸多态性 (SNP) 在复杂表型中功能作用的一种很有前途的方法,并且已经成为 GWAS 后时代的一个活跃研究领域。然而,如何有效地将 eQTL 图谱研究纳入 GWAS 以优先考虑因果基因仍然是一个悬而未决的问题。我们在此提出了一种新的方法,称为混合转录组全基因组关联研究 (TWAS) 和介导方差估计 (MTV),通过将基因的顺式 SNP 的效应建模为 eQTL 的函数。MTV 通过混合模型将整合方法和 TWAS 构建在一个统一的框架内,因此包含了许多先前的方法/检验作为特例。我们还从中介分析和两阶段孟德尔随机化的另外两个统计角度来证明 MTV。与现有方法相比,MTV 具有明显的优势,包括处理顺式 SNP 对表型的直接影响、用于评估顺式 SNP 和遗传调节基因表达 (GReX) 的联合效应的强大似然比检验、用于测量 GReX 和顺式 SNP 对表型方差的相对遗传贡献的两个有用的数量、以及计算效率高的参数扩展期望极大算法。通过广泛的模拟,我们确定 MTV 在联合评估总遗传效应时正确地控制了第一类错误,并证明在各种情况下比现有方法更有效地发现真实的关联信号。我们最后将 MTV 应用于三个 GWAS 中提供的 41 个复杂性状/疾病,并发现了许多现有方法遗漏的新关联基因。我们还揭示了一小部分但相当大的表型变异是由 GReX 介导的。总的来说,MTV 为整合组学分析构建了一个稳健而现实的建模基础,并具有提供更有吸引力的 GWAS 结果生物学解释的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验