Suppr超能文献

基于放射组学的冠状动脉周围脂肪组织特征预测冠状动脉狭窄的血流动力学意义。

Predicting haemodynamic significance of coronary stenosis with radiomics-based pericoronary adipose tissue characteristics.

机构信息

Department of Radiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi province, China.

GE Healthcare China, Daxing District, 1 Tongji South Road, Beijing, 100176, China.

出版信息

Clin Radiol. 2022 Feb;77(2):e154-e161. doi: 10.1016/j.crad.2021.10.019. Epub 2021 Nov 28.

Abstract

AIM

To investigate the diagnostic performance of the radiomics features of pericoronary adipose tissue (PCAT) in determining haemodynamically significant coronary artery stenosis as evaluated by fractional flow reserve (FFR).

MATERIALS AND METHODS

A total of 92 patients with clinically suspected coronary artery disease who underwent coronary computed tomography (CT) angiography (CCTA), invasive coronary angiography (ICA), and FFR examination within 1 month were included retrospectively, and 121 lesions were randomly assigned to the training and testing set. Based on manual segmentation of PCAT, 1,116 radiomics features were computed. After radiomics robustness assessment and feature selection, radiomics models were established using the different machine-learning algorithms. The area under the receiver operating characteristic (ROC) curve (AUC) and net reclassification index (NRI) were analysed to compare the discrimination and reclassification abilities of radiomics models.

RESULTS

Two radiomics features were selected after exclusions, and both were significantly higher in coronary arteries with FFR ≤0.8 than those with FFR >0.8. ROC analysis showed that the combination of CCTA and decision tree radiomics model achieved significantly higher diagnostic performance (AUC: 0.812) than CCTA alone (AUC: 0.599, p=0.015). Furthermore, the NRI of the combined model was 0.820 and 0.775 in the training and testing sets, respectively, suggesting the radiomics features of PCAT had were effective in classifying the haemodynamic significance of coronary stenosis.

CONCLUSIONS

Adding PCAT radiomics features to CCTA enabled identification of haemodynamically significant coronary artery stenosis.

摘要

目的

探究基于冠状动脉 CT 血管造影(CCTA)的冠状动脉周脂肪组织(PCAT)的放射组学特征在评估血流储备分数(FFR)时对确定有血流动力学意义的冠状动脉狭窄的诊断性能。

材料和方法

回顾性纳入 92 例临床疑似冠心病且在 1 个月内接受 CCTA、有创冠状动脉造影(ICA)和 FFR 检查的患者,共 121 处病变被随机分配到训练组和测试组。基于手动分割 PCAT,计算了 1116 个放射组学特征。经过放射组学稳健性评估和特征选择,使用不同的机器学习算法建立放射组学模型。通过比较受试者工作特征(ROC)曲线下面积(AUC)和净重新分类指数(NRI),分析放射组学模型的判别和重新分类能力。

结果

排除后共选择了 2 个放射组学特征,FFR≤0.8 的冠状动脉中这两个特征均显著高于 FFR>0.8 的冠状动脉。ROC 分析显示,与 CCTA 相比,CCTA 联合决策树放射组学模型具有更高的诊断效能(AUC:0.812 比 0.599,p=0.015)。此外,联合模型在训练集和测试集中的 NRI 分别为 0.820 和 0.775,表明 PCAT 的放射组学特征能够有效地对冠状动脉狭窄的血流动力学意义进行分类。

结论

在 CCTA 中加入 PCAT 放射组学特征有助于识别有血流动力学意义的冠状动脉狭窄。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验