Department of Cardiac Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, China.
Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110001, China.
Eur Radiol. 2023 May;33(5):3007-3019. doi: 10.1007/s00330-022-09377-z. Epub 2023 Feb 2.
To determine the incremental diagnostic value of radiomics signature of pericoronary adipose tissue (PCAT) in addition to the coronary artery stenosis and plaque characters for detecting hemodynamic significant coronary artery disease (CAD) based on coronary computed tomography angiography (CCTA).
In a multicenter trial of 262 patients, CCTA and invasive coronary angiography were performed, with fractional flow reserve (FFR) in 306 vessels. A total of 13 conventional quantitative characteristics including plaque characteristics (N = 10) and epicardial adipose tissue characteristics (N = 3) were obtained. A total of 106 radiomics features depicting the phenotype of the PCAT surrounding the lesion were calculated. All data were randomly split into a training dataset (75%) and a testing dataset (25%). Then three models (including the conventional model, the PCAT radiomics model, and the combined model) were established in the training dataset using multivariate logistic regression algorithm based on the conventional quantitative features and the PCAT radiomics features after dimension reduction.
A total of 124/306 vessels showed functional ischemia (FFR ≤ 0.80). The radiomics model performed better in discriminating ischemia from non-ischemia than the conventional model in both training (area under the receiver operating characteristic (ROC) curve (AUC): 0.770 vs 0.732, p < 0.05) and testing datasets (AUC: 0.740 vs 0.696, p < 0.05). The combined model showed significantly better discrimination than the conventional model in both training (AUC: 0.810 vs 0.732, p < 0.05) and testing datasets (AUC: 0.809 vs 0.696, p < 0.05).
The PCAT radiomics model showed good performance in predicting myocardial ischemia. Addition of PCAT radiomics to lesion quantitative characteristics improves the predictive power of functionally relevant CAD.
• Based on the plaque characteristics and EAT characteristics, the conventional model showed poor performance in predicting myocardial ischemia. • The PCAT radiomics model showed good prospect in predicting myocardial ischemia. • When combining the radiomics signature with the conventional quantitative features (including plaque features and EAT features), it showed significantly better performance in predicting myocardial ischemia.
基于冠状动脉计算机断层血管造影(CCTA),确定冠状动脉周围脂肪组织(PCAT)的放射组学特征在冠状动脉狭窄和斑块特征之外对检测血流动力学意义重大的冠状动脉疾病(CAD)的附加诊断价值。
在一项纳入 262 例患者的多中心试验中,对 CCTA 和冠状动脉造影进行了检查,其中 306 支血管进行了血流储备分数(FFR)检查。获得了 13 项常规定量特征,包括斑块特征(N=10)和心外膜脂肪组织特征(N=3)。计算了描述病变周围 PCAT 表型的总共 106 个放射组学特征。所有数据均随机分为训练数据集(75%)和测试数据集(25%)。然后,基于常规定量特征和经过降维处理的 PCAT 放射组学特征,在训练数据集中使用多变量逻辑回归算法建立了三个模型(包括常规模型、PCAT 放射组学模型和联合模型)。
共有 306 支血管中的 124 支显示功能缺血(FFR≤0.80)。在训练数据集中(接受者操作特征(ROC)曲线下面积(AUC):0.770 与 0.732,p<0.05)和测试数据集(AUC:0.740 与 0.696,p<0.05)中,放射组学模型在区分缺血与非缺血方面的表现优于常规模型。联合模型在训练数据集(AUC:0.810 与 0.732,p<0.05)和测试数据集(AUC:0.809 与 0.696,p<0.05)中均显示出明显优于常规模型的区分能力。
PCAT 放射组学模型在预测心肌缺血方面表现出良好的性能。将 PCAT 放射组学特征与病变定量特征相结合可提高对功能性相关 CAD 的预测能力。
基于斑块特征和 EAT 特征,常规模型在预测心肌缺血方面表现不佳。
PCAT 放射组学模型在预测心肌缺血方面具有良好的前景。
当将放射组学特征与常规定量特征(包括斑块特征和 EAT 特征)相结合时,其在预测心肌缺血方面表现出显著更好的性能。