Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
Mol Psychiatry. 2022 Mar;27(3):1676-1682. doi: 10.1038/s41380-021-01380-y. Epub 2021 Dec 1.
Electroconvulsive therapy (ECT) remains the gold-standard treatment for patients with depressive episodes, but the underlying mechanisms for antidepressant response and procedure-induced cognitive side effects have yet to be elucidated. Such mechanisms may be complex and involve certain ECT parameters and brain regions. Regarding parameters, the electrode placement (right unilateral or bitemporal) determines the geometric shape of the electric field (E-field), and amplitude determines the E-field magnitude in select brain regions (e.g., hippocampus). Here, we aim to determine the relationships between hippocampal E-field strength, hippocampal neuroplasticity, and antidepressant and cognitive outcomes. We used hippocampal E-fields and volumes generated from a randomized clinical trial that compared right unilateral electrode placement with different pulse amplitudes (600, 700, and 800 mA). Hippocampal E-field strength was variable but increased with each amplitude arm. We demonstrated a linear relationship between right hippocampal E-field and right hippocampal neuroplasticity. Right hippocampal neuroplasticity mediated right hippocampal E-field and antidepressant outcomes. In contrast, right hippocampal E-field was directly related to cognitive outcomes as measured by phonemic fluency. We used receiver operating characteristic curves to determine that the maximal right hippocampal E-field associated with cognitive safety was 112.5 V/m. Right hippocampal E-field strength was related to the whole-brain ratio of E-field strength per unit of stimulation current, but this whole-brain ratio was unrelated to antidepressant or cognitive outcomes. We discuss the implications of optimal hippocampal E-field dosing to maximize antidepressant outcomes and cognitive safety with individualized amplitudes.
电抽搐治疗(ECT)仍然是治疗抑郁症发作患者的金标准治疗方法,但抗抑郁反应和程序引起的认知副作用的潜在机制尚未阐明。这些机制可能很复杂,涉及某些 ECT 参数和脑区。关于参数,电极放置(右侧单侧或双颞)决定电场(E 场)的几何形状,而幅度决定选定脑区(例如海马体)中的 E 场大小。在这里,我们旨在确定海马体 E 场强度、海马体神经可塑性以及抗抑郁和认知结果之间的关系。我们使用了从一项比较右侧单侧电极放置与不同脉冲幅度(600、700 和 800 mA)的随机临床试验中生成的海马体 E 场和体积。海马体 E 场强度是可变的,但随着每个幅度臂的增加而增加。我们证明了右海马体 E 场与右海马体神经可塑性之间存在线性关系。右海马体神经可塑性介导了右海马体 E 场和抗抑郁效果。相比之下,右海马体 E 场与认知结果直接相关,认知结果通过语音流畅性测量。我们使用接收者操作特征曲线来确定与认知安全性相关的最大右海马体 E 场为 112.5 V/m。右海马体 E 场强度与每单位刺激电流的全脑 E 场强度比值有关,但该全脑比值与抗抑郁或认知结果无关。我们讨论了优化海马体 E 场剂量以最大限度地提高抗抑郁效果和认知安全性的意义,个体化幅度。