Suppr超能文献

量化在线平台中的社会组织与政治两极分化。

Quantifying social organization and political polarization in online platforms.

作者信息

Waller Isaac, Anderson Ashton

机构信息

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

出版信息

Nature. 2021 Dec;600(7888):264-268. doi: 10.1038/s41586-021-04167-x. Epub 2021 Dec 1.

Abstract

Mass selection into groups of like-minded individuals may be fragmenting and polarizing online society, particularly with respect to partisan differences. However, our ability to measure the social makeup of online communities and in turn, to understand the social organization of online platforms, is limited by the pseudonymous, unstructured and large-scale nature of digital discussion. Here we develop a neural-embedding methodology to quantify the positioning of online communities along social dimensions by leveraging large-scale patterns of aggregate behaviour. Applying our methodology to 5.1 billion comments made in 10,000 communities over 14 years on Reddit, we measure how the macroscale community structure is organized with respect to age, gender and US political partisanship. Examining political content, we find that Reddit underwent a significant polarization event around the 2016 US presidential election. Contrary to conventional wisdom, however, individual-level polarization is rare; the system-level shift in 2016 was disproportionately driven by the arrival of new users. Political polarization on Reddit is unrelated to previous activity on the platform and is instead temporally aligned with external events. We also observe a stark ideological asymmetry, with the sharp increase in polarization in 2016 being entirely attributable to changes in right-wing activity. This methodology is broadly applicable to the study of online interaction, and our findings have implications for the design of online platforms, understanding the social contexts of online behaviour, and quantifying the dynamics and mechanisms of online polarization.

摘要

将观点相似的个体选入群体可能会使网络社会碎片化并两极分化,尤其是在党派差异方面。然而,我们衡量在线社区社会构成进而理解在线平台社会组织的能力,受到数字讨论的匿名性、非结构化和大规模性质的限制。在此,我们开发了一种神经嵌入方法,通过利用聚合行为的大规模模式来量化在线社区在社会维度上的定位。将我们的方法应用于Reddit上14年里10000个社区的51亿条评论,我们衡量了宏观社区结构在年龄、性别和美国政治党派方面是如何组织的。通过研究政治内容,我们发现Reddit在2016年美国大选前后经历了一次重大的两极分化事件。然而,与传统观点相反的是,个体层面的两极分化很少见;2016年的系统层面转变主要是由新用户的到来不成比例地推动的。Reddit上的政治两极分化与该平台之前的活动无关,而是在时间上与外部事件一致。我们还观察到一种明显的意识形态不对称,2016年两极分化的急剧增加完全归因于右翼活动的变化。这种方法广泛适用于在线互动研究,我们的发现对在线平台的设计、理解在线行为的社会背景以及量化在线两极分化的动态和机制都有启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验