Suppr超能文献

集成分类方法用于讽刺检测。

Ensemble Classification Approach for Sarcasm Detection.

机构信息

Department of Computer Science and Engineering, Lovely Professional University, Punjab, India.

SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Mumbai, India.

出版信息

Behav Neurol. 2021 Nov 22;2021:9731519. doi: 10.1155/2021/9731519. eCollection 2021.

Abstract

Cognitive science is a technology which focuses on analyzing the human brain using the application of DM. The databases are utilized to gather and store the large volume of data. The authenticated information is extracted using measures. This research work is based on detecting the sarcasm from the text data. This research work introduces a scheme to detect sarcasm based on PCA algorithm, -means algorithm, and ensemble classification. The four ensemble classifiers are designed with the objective of detecting the sarcasm. The first ensemble classification algorithm (SKD) is the combination of SVM, KNN, and decision tree. In the second ensemble classifier (SLD), SVM, logistic regression, and decision tree classifiers are combined for the sarcasm detection. In the third ensemble model (MLD), MLP, logistic regression, and decision tree are combined, and the last one (SLM) is the combination of MLP, logistic regression, and SVM. The proposed model is implemented in Python and tested on five datasets of different sizes. The performance of the models is tested with regard to various metrics.

摘要

认知科学是一项使用 DM 分析大脑的技术。数据库用于收集和存储大量数据。使用措施提取经过认证的信息。这项研究工作基于从文本数据中检测讽刺。这项研究工作提出了一种基于 PCA 算法、-means 算法和集成分类的讽刺检测方案。四个集成分类器旨在检测讽刺。第一个集成分类算法(SKD)是 SVM、KNN 和决策树的组合。在第二个集成分类器(SLD)中,SVM、逻辑回归和决策树分类器被组合起来进行讽刺检测。在第三个集成模型(MLD)中,MLP、逻辑回归和决策树被组合在一起,最后一个(SLM)是 MLP、逻辑回归和 SVM 的组合。该模型在 Python 中实现,并在五个不同大小的数据集上进行了测试。模型的性能根据各种指标进行了测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验