Suppr超能文献

基于概率贝叶斯分类的乳腺癌患者预后诊断。

Prognostic Diagnosis for Breast Cancer Patients Using Probabilistic Bayesian Classification.

机构信息

The University of Technology and Applied Science Ibri Sultanate of Oman, Oman.

Department of Biotechnology, GLA University, Mathura, India.

出版信息

Biomed Res Int. 2022 Jul 25;2022:1859222. doi: 10.1155/2022/1859222. eCollection 2022.

Abstract

The diagnosis and treatment of patients in the healthcare industry are greatly aided by data analytics. Massive amounts of data should be handled using machine learning approaches to provide tools for prediction and categorization to support practitioner decision-making. Based on the kind of tumor, disorders like breast cancer can be categorized. The difficulties associated with evaluating vast amounts of data should be overcome by discovering an efficient method for categorization. Based on the Bayesian method, we analyzed the influence of clinic pathological indicators on the prognosis and survival rate of breast cancer patients and compared the local resection value directly using the lymph node ratio (LNR) and the overall value using the LNR differences in effect between estimates. Logistic regression was used to estimate the overall LNR of patients. After that, a probabilistic Bayesian classifier-based dynamic regression model for prognosis analysis is built to capture the dynamic effect of multiple clinic pathological markers on patient prognosis. The dynamic regression model employing the total estimated value of LNR had the best fitting impact on the data, according to the simulation findings. In comparison to other models, this model has the greatest overall survival forecast accuracy. These prognostic techniques shed light on the nodal survival and status particular to the patient. Additionally, the framework is flexible and may be used with various cancer types and datasets.

摘要

数据分析极大地帮助了医疗保健行业的患者诊断和治疗。应该使用机器学习方法来处理大量数据,提供预测和分类工具,以支持医生的决策。可以根据肿瘤的类型对乳腺癌等疾病进行分类。通过发现一种有效的分类方法,可以克服评估大量数据的困难。我们基于贝叶斯方法,分析了临床病理指标对乳腺癌患者预后和生存率的影响,并直接使用淋巴结比率 (LNR) 进行局部切除的价值,以及通过 LNR 之间的估计差异进行整体价值比较。我们使用逻辑回归估计患者的整体 LNR。之后,建立了一个基于概率贝叶斯分类器的预后分析动态回归模型,以捕捉多个临床病理标志物对患者预后的动态影响。根据模拟结果,采用 LNR 总估计值的动态回归模型对数据的拟合效果最佳。与其他模型相比,该模型对总体生存率的预测准确率最高。这些预后技术揭示了患者特定的淋巴结生存和状态。此外,该框架具有灵活性,可以与各种癌症类型和数据集一起使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5da2/9343185/afd0aa35ee8d/BMRI2022-1859222.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验