Suppr超能文献

具有覆盖率保证的选择性预测集模型。

Selective prediction-set models with coverage rate guarantees.

机构信息

Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA.

Flatiron Health.

出版信息

Biometrics. 2023 Jun;79(2):811-825. doi: 10.1111/biom.13612. Epub 2021 Dec 30.

Abstract

The current approach to using machine learning (ML) algorithms in healthcare is to either require clinician oversight for every use case or use their predictions without any human oversight. We explore a middle ground that lets ML algorithms abstain from making a prediction to simultaneously improve their reliability and reduce the burden placed on human experts. To this end, we present a general penalized loss minimization framework for training selective prediction-set (SPS) models, which choose to either output a prediction set or abstain. The resulting models abstain when the outcome is difficult to predict accurately, such as on subjects who are too different from the training data, and achieve higher accuracy on those they do give predictions for. We then introduce a model-agnostic, statistical inference procedure for the coverage rate of an SPS model that ensembles individual models trained using K-fold cross-validation. We find that SPS ensembles attain prediction-set coverage rates closer to the nominal level and have narrower confidence intervals for its marginal coverage rate. We apply our method to train neural networks that abstain more for out-of-sample images on the MNIST digit prediction task and achieve higher predictive accuracy for ICU patients compared to existing approaches.

摘要

目前在医疗保健中使用机器学习 (ML) 算法的方法要么要求临床医生对每个用例进行监督,要么在没有任何人工监督的情况下使用他们的预测。我们探索了一个中间地带,让 ML 算法避免做出预测,从而同时提高其可靠性并减轻人类专家的负担。为此,我们提出了一种用于训练选择性预测集 (SPS) 模型的通用惩罚损失最小化框架,该模型可以选择输出预测集或弃权。当结果难以准确预测时,例如在与训练数据差异太大的受试者上,这些模型会弃权,并且在他们确实给出预测的情况下会获得更高的准确性。然后,我们为使用 K 折交叉验证训练的单个模型组成的 SPS 模型引入了一种无模型、统计推断程序,用于其覆盖范围。我们发现 SPS 集合达到了更接近名义水平的预测集覆盖率,并且其边际覆盖率的置信区间更窄。我们将我们的方法应用于训练神经网络,这些神经网络在 MNIST 数字预测任务的样本外图像上弃权更多,并与现有方法相比,对 ICU 患者实现了更高的预测准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验