Suppr超能文献

临床试验批准预测的不确定性量化与可解释性

Uncertainty Quantification and Interpretability for Clinical Trial Approval Prediction.

作者信息

Lu Yingzhou, Chen Tianyi, Hao Nan, Van Rechem Capucine, Chen Jintai, Fu Tianfan

机构信息

School of Medicine, Stanford University, Stanford, CA, USA.

Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY, USA.

出版信息

Health Data Sci. 2024 Apr 15;4:0126. doi: 10.34133/hds.0126. eCollection 2024.

Abstract

Clinical trial is a crucial step in the development of a new therapy (e.g., medication) and is remarkably expensive and time-consuming. Forecasting the approval of clinical trials accurately would enable us to circumvent trials destined to fail, thereby allowing us to allocate more resources to therapies with better chances. However, existing approval prediction algorithms did not quantify the uncertainty and provide interpretability, limiting their usage in real-world clinical trial management. This paper quantifies uncertainty and improves interpretability in clinical trial approval predictions. We devised a selective classification approach and integrated it with the Hierarchical Interaction Network, the state-of-the-art clinical trial prediction model. Selective classification, encompassing a spectrum of methods for uncertainty quantification, empowers the model to withhold decision-making in the face of samples marked by ambiguity or low confidence. This approach not only amplifies the accuracy of predictions for the instances it chooses to classify but also notably enhances the model's interpretability. Comprehensive experiments demonstrate that incorporating uncertainty markedly enhances the model's performance. Specifically, the proposed method achieved 32.37%, 21.43%, and 13.27% relative improvement on area under the precision-recall curve over the base model (Hierarchical Interaction Network) in phase I, II, and III trial approval predictions, respectively. For phase III trials, our method reaches 0.9022 area under the precision-recall curve scores. In addition, we show a case study of interpretability that helps domain experts to understand model's outcome. The code is publicly available at https://github.com/Vincent-1125/Uncertainty-Quantification-on-Clinical-Trial-Outcome-Prediction. Our approach not only measures model uncertainty but also greatly improves interpretability and performance for clinical trial approval prediction.

摘要

临床试验是新疗法(如药物)研发过程中的关键一步,成本高昂且耗时长久。准确预测临床试验的获批情况能够使我们规避注定会失败的试验,从而将更多资源分配给成功几率更高的疗法。然而,现有的获批预测算法并未对不确定性进行量化,也不具备可解释性,限制了它们在实际临床试验管理中的应用。本文对临床试验获批预测中的不确定性进行了量化,并提高了其可解释性。我们设计了一种选择性分类方法,并将其与最先进的临床试验预测模型——分层交互网络相结合。选择性分类涵盖了一系列不确定性量化方法,使模型能够在面对模糊或低置信度的样本时暂缓决策。这种方法不仅提高了模型对其选择分类的实例的预测准确性,还显著增强了模型的可解释性。综合实验表明,纳入不确定性显著提升了模型的性能。具体而言,在I期、II期和III期试验获批预测中,所提出的方法相对于基础模型(分层交互网络)在精确率-召回率曲线下面积上分别实现了32.37%、21.43%和13.27%的相对提升。对于III期试验,我们的方法在精确率-召回率曲线下面积得分达到了0.9022。此外,我们展示了一个可解释性的案例研究,有助于领域专家理解模型的结果。代码可在https://github.com/Vincent-1125/Uncertainty-Quantification-on-Clinical-Trial-Outcome-Prediction上公开获取。我们的方法不仅能够衡量模型的不确定性,还极大地提高了临床试验获批预测的可解释性和性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b31/11031120/e516430f407f/hds.0126.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验