Xi Zichao, Shi Ke, Xu Xuan, Jing Peng, Liu Baocang, Gao Rui, Zhang Jun
School of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules and Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, 235 West University Street, Hohhot, 010021, P. R. China.
Adv Sci (Weinh). 2022 Feb;9(4):e2104245. doi: 10.1002/advs.202104245. Epub 2021 Dec 2.
Electrocatalytic nitrogen reduction reaction (NRR) is a promising alternative to the traditional Haber-Bosch process. However, the sluggish kinetics and competitive hydrogen evolution reaction result in poor NH yield and low Faradaic efficiency (FE). Herein, single bismuth atoms incorporated hollow titanium nitride nanorods encapsulated in nitrogen-doped carbon layer (NC) supported on carbon cloth (NC/Bi SAs/TiN/CC) is constructed for electrocatalytic NRR. Impressively, as an integrated electrode, it exhibits a superior ammonia yield rate of 76.15 µg mg h (9859 µg μmol h ) at -0.8 V versus RHE and a high FE of 24.60% at -0.5 V versus RHE in 0.1 m Na SO solution, which can retain stable performance in 10 h continuous operation, surpassing the overwhelming majority of reported Bi-based NRR catalysts. Coupling various characterizations with theory calculations, it is disclosed that the unique monolithic core-shell configuration with porous structure endows abundant accessible active sites, outstanding charge-transfer property, and good stability, while the cooperation effect of Bi SAs and TiN can simultaneously promote the hydrogenation of N into NH * on the TiN surface and the desorption of NH to release NH on the Bi SA sites. These features result in the significant promotion of NRR performance.
电催化氮还原反应(NRR)是传统哈伯-博施法的一种有前景的替代方法。然而,缓慢的动力学和竞争性析氢反应导致氨产率低和法拉第效率(FE)低。在此,构建了一种负载在碳布上的氮掺杂碳层(NC)包裹的单铋原子掺杂空心氮化钛纳米棒(NC/Bi SAs/TiN/CC)用于电催化NRR。令人印象深刻的是,作为一种集成电极,在0.1 m Na₂SO₄溶液中,相对于可逆氢电极(RHE)在-0.8 V时,其氨产率高达76.15 μg mg⁻¹ h⁻¹(9859 μg μmol⁻¹ h⁻¹),在-0.5 V时FE高达24.60%,并且在10小时连续运行中能保持稳定性能,超过了绝大多数已报道的铋基NRR催化剂。通过结合各种表征和理论计算发现,具有多孔结构的独特整体核壳结构赋予了丰富的可及活性位点、出色的电荷转移性能和良好的稳定性,而Bi SAs和TiN的协同作用能够同时促进TiN表面N加氢生成NH*以及NH在Bi SA位点上脱附以释放NH₃。这些特性显著促进了NRR性能。