Fang Zhiwei, Wu Ping, Qian Yumin, Yu Guihua
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):4275-4281. doi: 10.1002/anie.202014302. Epub 2020 Dec 23.
To achieve the electrochemical nitrogen reduction reaction (NRR) for efficient and sustainable NH production, catalysts should exhibit high selectivity and activity with optimal adsorption energy. Herein we developed a three-dimensional (3D) amorphous BiNi alloy toward a significantly enhanced NRR compared with its crystalline and metal counterparts. Ni alloying enables the chemisorption of nitrogen and the lower free-energy change for the *NNH formation, and the 3D alloy electrocatalyst exhibits high catalytic activity for NH production with a yield rate of 17.5 μg h mg and Faradaic efficiency of 13.8 %. The enhanced electron transfer and increased electrochemical surface area were revealed in the interconnected porous scaffold, affording it sufficiently efficient and stable activity for potential practical applications. This work offers new insights into optimizing the adsorption energy of reactants and intermediates combined with tuning the crystallinity of NRR electrocatalysts.
为实现高效且可持续的氨生产的电化学氮还原反应(NRR),催化剂应具有高选择性和活性,并具备最佳吸附能。在此,我们开发了一种三维(3D)非晶态BiNi合金,与晶体和金属对应物相比,其对NRR有显著增强。镍合金化能够实现氮的化学吸附以及*NNH形成的较低自由能变化,并且这种3D合金电催化剂对氨生产表现出高催化活性,产率为17.5 μg h mg ,法拉第效率为13.8%。在相互连接的多孔支架中揭示了增强的电子转移和增加的电化学表面积,使其具有足够高效和稳定的活性以用于潜在的实际应用。这项工作为优化反应物和中间体的吸附能以及调节NRR电催化剂的结晶度提供了新的见解。