Suppr超能文献

使用单细胞数据区分不同的生长模式。

Distinguishing different modes of growth using single-cell data.

机构信息

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.

出版信息

Elife. 2021 Dec 2;10:e72565. doi: 10.7554/eLife.72565.

Abstract

Collection of high-throughput data has become prevalent in biology. Large datasets allow the use of statistical constructs such as binning and linear regression to quantify relationships between variables and hypothesize underlying biological mechanisms based on it. We discuss several such examples in relation to single-cell data and cellular growth. In particular, we show instances where what appears to be ordinary use of these statistical methods leads to incorrect conclusions such as growth being non-exponential as opposed to exponential and vice versa. We propose that the data analysis and its interpretation should be done in the context of a generative model, if possible. In this way, the statistical methods can be validated either analytically or against synthetic data generated via the use of the model, leading to a consistent method for inferring biological mechanisms from data. On applying the validated methods of data analysis to infer cellular growth on our experimental data, we find the growth of length in to be non-exponential. Our analysis shows that in the later stages of the cell cycle the growth rate is faster than exponential.

摘要

高通量数据的收集在生物学中已经很普遍。大型数据集允许使用统计结构,如分箱和线性回归,来量化变量之间的关系,并根据这些关系假设潜在的生物学机制。我们将讨论与单细胞数据和细胞生长相关的几个这样的例子。特别是,我们展示了一些看似普通使用这些统计方法的例子,这些方法会导致错误的结论,例如生长是非指数的,而不是指数的,反之亦然。我们提出,如果可能的话,数据分析及其解释应该在生成模型的上下文中进行。通过这种方式,可以通过分析或使用模型生成的合成数据来验证统计方法,从而为从数据推断生物学机制提供一致的方法。在将经过验证的数据分析方法应用于我们的实验数据以推断细胞生长时,我们发现长度的生长是非指数的。我们的分析表明,在细胞周期的后期,生长速度比指数快。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fb8/8727026/dfe6bee4b02b/elife-72565-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验