Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA.
Nat Commun. 2024 Nov 16;15(1):9948. doi: 10.1038/s41467-024-54242-w.
A critical cell cycle checkpoint for most bacteria is the onset of constriction when the septal peptidoglycan synthesis starts. According to the current understanding, the arrival of FtsN to midcell triggers this checkpoint in Escherichia coli. Recent structural and in vitro data suggests that recruitment of FtsN to the Z-ring leads to a conformational switch in actin-like FtsA, which links FtsZ protofilaments to the cell membrane and acts as a hub for the late divisome proteins. Here, we investigate this putative pathway using in vivo measurements and stochastic cell cycle modeling at moderately fast growth rates. Quantitatively upregulating protein concentrations and determining the resulting division timings shows that FtsN and FtsA numbers are not rate-limiting for the division in E. coli. However, at higher overexpression levels, they affect divisions: FtsN by accelerating and FtsA by inhibiting them. At the same time, we find that the FtsZ numbers in the cell are one of the rate-limiting factors for cell divisions in E. coli. Altogether, these findings suggest that instead of FtsN, accumulation of FtsZ in the Z-ring is one of the main drivers of the onset of constriction in E. coli at faster growth rates.
大多数细菌的一个关键细胞周期检查点是隔膜肽聚糖合成开始时的收缩开始。根据目前的理解,FtsN 到达中隔触发了大肠杆菌中的这个检查点。最近的结构和体外数据表明,FtsN 向 Z 环的募集导致类似于肌动蛋白的 FtsA 的构象转换,该构象转换将 FtsZ 原纤维与细胞膜连接,并作为晚期分裂体蛋白的枢纽。在这里,我们使用体内测量和适度快速生长速率下的随机细胞周期建模来研究这个假定的途径。定量上调蛋白质浓度并确定由此产生的分裂时间表明,FtsN 和 FtsA 的数量不是大肠杆菌分裂的限速因素。然而,在更高的过表达水平下,它们会影响分裂:FtsN 通过加速,而 FtsA 通过抑制。与此同时,我们发现细胞中 FtsZ 的数量是大肠杆菌细胞分裂的限速因素之一。总的来说,这些发现表明,在较快的生长速度下,FtsZ 在 Z 环中的积累而不是 FtsN 的积累,是大肠杆菌收缩开始的主要驱动因素之一。