Suppr超能文献

使用前列腺 MRI 全自动深度学习进行前列腺癌风险评估和避免前列腺活检:与 PI-RADS 比较以及在列线图中整合临床数据。

Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI: comparison to PI-RADS and integration with clinical data in nomograms.

机构信息

Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.

Heidelberg University Medical School, Heidelberg, Germany.

出版信息

Eur Radiol. 2024 Dec;34(12):7909-7920. doi: 10.1007/s00330-024-10818-0. Epub 2024 Jul 2.

Abstract

OBJECTIVES

Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) analyzes MRI data independently, and has been shown to be on par with clinical radiologists, but has yet to be incorporated into RCs. The goal of this study is to re-assess the diagnostic quality of RCs, the impact of replacing PI-RADS with DL predictions, and potential performance gains by adding DL besides PI-RADS.

MATERIAL AND METHODS

One thousand six hundred twenty-seven consecutive examinations from 2014 to 2021 were included in this retrospective single-center study, including 517 exams withheld for RC testing. Board-certified radiologists assessed PI-RADS during clinical routine, then systematic and MRI/Ultrasound-fusion biopsies provided histopathological ground truth for significant prostate cancer (sPC). nnUNet-based DL ensembles were trained on biparametric MRI predicting the presence of sPC lesions (UNet-probability) and a PI-RADS-analogous five-point scale (UNet-Likert). Previously published RCs were validated as is; with PI-RADS substituted by UNet-Likert (UNet-Likert-substituted RC); and with both UNet-probability and PI-RADS (UNet-probability-extended RC). Together with a newly fitted RC using clinical data, PI-RADS and UNet-probability, existing RCs were compared by receiver-operating characteristics, calibration, and decision-curve analysis.

RESULTS

Diagnostic performance remained stable for UNet-Likert-substituted RCs. DL contained complementary diagnostic information to PI-RADS. The newly-fitted RC spared 49% [252/517] of biopsies while maintaining the negative predictive value (94%), compared to PI-RADS ≥ 4 cut-off which spared 37% [190/517] (p < 0.001).

CONCLUSIONS

Incorporating DL as an independent diagnostic marker for RCs can improve patient stratification before biopsy, as there is complementary information in DL features and clinical PI-RADS assessment.

CLINICAL RELEVANCE STATEMENT

For patients with positive prostate screening results, a comprehensive diagnostic workup, including prostate MRI, DL analysis, and individual classification using nomograms can identify patients with minimal prostate cancer risk, as they benefit less from the more invasive biopsy procedure.

KEY POINTS

The current MRI-based nomograms result in many negative prostate biopsies. The addition of DL to nomograms with clinical data and PI-RADS improves patient stratification before biopsy. Fully automatic DL can be substituted for PI-RADS without sacrificing the quality of nomogram predictions. Prostate nomograms show cancer detection ability comparable to previous validation studies while being suitable for the addition of DL analysis.

摘要

目的

风险计算器(RC)通过临床/人口统计学信息提高前列腺活检的患者选择,最近通过使用前列腺成像报告和数据系统(PI-RADS)的前列腺 MRI 进行。全自动深度学习(DL)独立分析 MRI 数据,其表现与临床放射科医生相当,但尚未纳入 RC。本研究的目的是重新评估 RC 的诊断质量,用 DL 预测替换 PI-RADS 的影响,以及通过添加 DL 除 PI-RADS 之外潜在的性能提升。

材料和方法

这项回顾性单中心研究纳入了 2014 年至 2021 年的 1627 次连续检查,其中有 517 次检查被保留用于 RC 检测。经过认证的放射科医生在临床常规中评估 PI-RADS,然后进行系统和 MRI/超声融合活检,为显著前列腺癌(sPC)提供组织病理学依据。基于 nnUNet 的 DL 集成模型在双参数 MRI 上进行训练,以预测 sPC 病变的存在(UNet-probability)和类似于 PI-RADS 的五分制量表(UNet-Likert)。之前发表的 RC 作为对照进行验证,PI-RADS 被 UNet-Likert 替代(UNet-Likert-substituted RC),PI-RADS 和 UNet-probability 都被纳入(UNet-probability-extended RC)。使用临床数据、PI-RADS 和 UNet-probability,与新拟合的 RC 一起,通过接收者操作特征、校准和决策曲线分析对现有的 RC 进行比较。

结果

对于 UNet-Likert-substituted RC,诊断性能保持稳定。DL 包含了与 PI-RADS 互补的诊断信息。与 PI-RADS≥4 截止值相比,新拟合的 RC 可以保留 49%[252/517]的活检,同时保持阴性预测值(94%)(p<0.001)。

结论

将 DL 作为 RC 的独立诊断标志物纳入其中,可以改善活检前的患者分层,因为在 DL 特征和临床 PI-RADS 评估中存在互补信息。

临床相关性声明

对于有阳性前列腺筛查结果的患者,全面的诊断性检查,包括前列腺 MRI、DL 分析和使用列线图进行个体分类,可以识别出前列腺癌风险最小的患者,因为他们从更具侵入性的活检程序中获益较少。

关键点

目前基于 MRI 的列线图导致许多前列腺阴性活检。将 DL 与临床数据和 PI-RADS 相结合的列线图可以在活检前改善患者的分层。全自动 DL 可以替代 PI-RADS,而不会影响列线图预测的质量。前列腺列线图显示出与之前验证研究相当的癌症检测能力,同时也适合添加 DL 分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8df5/11557625/296b4cf8e4cf/330_2024_10818_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验