Goh Youngin, Hwang Junghyeon, Kim Minki, Lee Yongsun, Jung Minhyun, Jeon Sanghun
School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
ACS Appl Mater Interfaces. 2021 Dec 15;13(49):59422-59430. doi: 10.1021/acsami.1c14952. Epub 2021 Dec 2.
In the quest for highly scalable and three-dimensional (3D) stackable memory components, ferroelectric tunnel junction (FTJ) crossbar architectures are promising technologies for nonvolatile logic and neuromorphic computing. Most FTJs, however, require additional nonlinear devices to suppress sneak-path current, limiting large-scale arrays in practical applications. Moreover, the giant tunneling electroresistance (TER) remains challenging due to their inherent weak polarization. Here, we present that the employment of a diffusion barrier layer as well as a bottom metal electrode having a significantly low thermal expansion coefficient has been identified as an important way to enhance the strain, stabilize the ferroelectricity, and manage the leakage current in ultrathin hafnia film, achieving a high TER of 100, negligible resistance changes even up to 10 cycles, and a high switching speed of a few tens of nanoseconds. Also, we demonstrate that the usage of an imprinting effect in a ferroelectric capacitor induced by an ionized oxygen vacancy near the electrode results in highly asymmetric current-voltage characteristics with a rectifying ratio of 1000. Notably, the proposed FTJ exhibits a high density array size (>4k) with a securing read margin of 10%. These findings provide a guideline for the design of high-performance and selector-free FTJ devices for large-scale crossbar arrays in neuromorphic applications.
在寻求高度可扩展的三维(3D)可堆叠存储组件的过程中,铁电隧道结(FTJ)交叉阵列架构是用于非易失性逻辑和神经形态计算的有前途的技术。然而,大多数FTJ需要额外的非线性器件来抑制潜行路径电流,这限制了其在实际应用中的大规模阵列。此外,由于其固有的弱极化,巨大的隧穿电阻变化(TER)仍然具有挑战性。在此,我们提出,采用扩散阻挡层以及具有极低热膨胀系数的底部金属电极已被确定为增强应变、稳定铁电性以及控制超薄氧化铪薄膜中漏电流的重要方法,实现了100的高TER、即使高达10个循环也可忽略不计的电阻变化以及几十纳秒的高开关速度。此外,我们证明了电极附近的电离氧空位在铁电电容器中引起的压印效应的使用导致了具有1000整流比的高度不对称电流 - 电压特性。值得注意的是,所提出的FTJ展示了具有10%安全读取裕度的高密度阵列尺寸(>4k)。这些发现为神经形态应用中用于大规模交叉阵列的高性能且无需选择器的FTJ器件的设计提供了指导。