Suppr超能文献

Cockayne 综合征 B 蛋白选择性解析并与分子间 DNA G-四链体结构相互作用。

Cockayne Syndrome B Protein Selectively Resolves and Interact with Intermolecular DNA G-Quadruplex Structures.

机构信息

Chemistry Department, Imperial College London, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, United Kingdom.

Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, United Kingdom.

出版信息

J Am Chem Soc. 2021 Dec 15;143(49):20988-21002. doi: 10.1021/jacs.1c10745. Epub 2021 Dec 2.

Abstract

Guanine-rich DNA can fold into secondary structures known as G-quadruplexes (G4s). G4s can form from a single DNA strand (intramolecular) or from multiple DNA strands (intermolecular), but studies on their biological functions have been often limited to intramolecular G4s, owing to the low probability of intermolecular G4s to form within genomic DNA. Herein, we report the first example of an endogenous protein, Cockayne Syndrome B (CSB), that can bind selectively with picomolar affinity toward intermolecular G4s formed within rDNA while displaying negligible binding toward intramolecular structures. We observed that CSB can selectively resolve intermolecular over intramolecular G4s, demonstrating that its selectivity toward intermolecular structures is also reflected at the resolvase level. Immunostaining of G4s with the antibody BG4 in CSB-impaired cells (CS1AN) revealed that G4-staining in the nucleolus of these cells can be abrogated by transfection of viable CSB, suggesting that intermolecular G4s can be formed within rDNA and act as binding substrate for CSB. Given that loss of function of CSB elicits premature aging phenotypes, our findings indicate that the interaction between CSB and intermolecular G4s in rDNA could be of relevance to maintain cellular homeostasis.

摘要

富含鸟嘌呤的 DNA 可以折叠成称为 G-四链体 (G4s) 的二级结构。G4 可以从单个 DNA 链(分子内)或多个 DNA 链(分子间)形成,但由于基因组 DNA 中分子间 G4 形成的概率较低,因此对其生物学功能的研究往往仅限于分子内 G4。在此,我们报告了第一个内源性蛋白 Cockayne 综合征 B(CSB)的例子,它可以选择性地以皮摩尔亲和力与 rDNA 中形成的分子间 G4 结合,而对分子内结构显示出可忽略不计的结合。我们观察到 CSB 可以选择性地解析分子间 G4 而不是分子内 G4,表明其对分子间结构的选择性也反映在解旋酶水平上。用抗体 BG4 对 CSB 缺陷细胞(CS1AN)中的 G4 进行免疫染色,发现将有活力的 CSB 转染后,这些细胞核仁中的 G4 染色可以被消除,这表明 rDNA 内可以形成分子间 G4 并作为 CSB 的结合底物。鉴于 CSB 功能丧失会引发过早衰老表型,我们的发现表明 CSB 和 rDNA 中分子间 G4 之间的相互作用可能与维持细胞内稳态有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验