Suppr超能文献

通过界面残留共存法制备亚10纳米共价有机框架结晶薄膜

Crystallizing Sub 10 nm Covalent Organic Framework Thin Films via Interfacial-Residual Concomitance.

作者信息

Kumar Mahato Ashok, Bag Saikat, Sasmal Himadri Sekhar, Dey Kaushik, Giri Indrajit, Linares-Moreau Mercedes, Carbonell Carlos, Falcaro Paolo, Gowd E Bhoje, Vijayaraghavan Ratheesh K, Banerjee Rahul

机构信息

Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.

Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.

出版信息

J Am Chem Soc. 2021 Dec 15;143(49):20916-20926. doi: 10.1021/jacs.1c09740. Epub 2021 Dec 2.

Abstract

Synthesis of covalent organic framework (COF) thin films on different supports with high crystallinity and porosity is crucial for their potential applications. We have designed a new synchronized methodology, residual crystallization (RC), to synthesize sub 10 nm COF thin films. These residual crystallized COF thin films showcase high surface area, crystallinity, and conductivity at room temperature. We have used interfacial crystallization (IC) as a rate-controlling tool for simultaneous residual crystallization. We have also diversified the methodology of residual crystallization by utilizing two different crystallization pathways: fiber-to-film (F-F) and sphere-to-film (S-F). In both cases, we could obtain continuous COF thin films with high crystallinity and porosity grown on various substrates (the highest surface area of a TpAzo COF thin film being 2093 m g). Precise control over the crystallization allows the synthesis of macroscopic defect-free sub 10 nm COF thin films with a minimum thickness of ∼1.8 nm. We have synthesized two COF thin films (TpAzo and TpDPP) using F-F and S-F pathways on different supports such as borosilicate glass, FTO, silicon, Cu, metal, and ITO. Also, we have investigated the mechanism of the growth of these thin films on various substrates with different wettability. Further, a hydrophilic support (glass) was used to grow the thin films in situ for four-probe system device fabrication. All residual crystallized COF thin films exhibit outstanding conductivity values. We could obtain a conductivity of 3.7 × 10 mS cm for the TpAzo film synthesized by S-F residual crystallization.

摘要

在不同载体上合成具有高结晶度和孔隙率的共价有机框架(COF)薄膜对其潜在应用至关重要。我们设计了一种新的同步方法——残余结晶法(RC),以合成亚10纳米的COF薄膜。这些残余结晶的COF薄膜在室温下具有高表面积、结晶度和导电性。我们将界面结晶(IC)用作同时进行残余结晶的速率控制工具。我们还通过利用两种不同的结晶途径——纤维到薄膜(F-F)和球体到薄膜(S-F),使残余结晶方法多样化。在这两种情况下,我们都能在各种基底上获得具有高结晶度和孔隙率的连续COF薄膜(TpAzo COF薄膜的最高表面积为2093 m²/g)。对结晶的精确控制使得能够合成宏观无缺陷的亚10纳米COF薄膜,其最小厚度约为1.8纳米。我们使用F-F和S-F途径在不同载体(如硼硅酸盐玻璃、FTO、硅、铜、金属和ITO)上合成了两种COF薄膜(TpAzo和TpDPP)。此外,我们研究了这些薄膜在具有不同润湿性的各种基底上的生长机制。此外,使用亲水性载体(玻璃)原位生长薄膜以制造四探针系统器件。所有残余结晶的COF薄膜都表现出出色的导电率值。通过S-F残余结晶合成的TpAzo薄膜的导电率可达3.7×10⁻³ mS/cm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验