Suppr超能文献

离子共价有机框架膜在响应电荷变化时的异常热渗透转换性能。

Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations.

作者信息

Xian Weipeng, Zuo Xiuhui, Zhu Changjia, Guo Qing, Meng Qing-Wei, Zhu Xincheng, Wang Sai, Ma Shengqian, Sun Qi

机构信息

Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Department of Chemistry, University of North Texas, 1508 W Mulberry St Denton, Denton, TX, 76201, USA.

出版信息

Nat Commun. 2022 Jun 13;13(1):3386. doi: 10.1038/s41467-022-31183-w.

Abstract

Increasing the charge density of ionic membranes is believed to be beneficial for generating high output osmotic energy. Herein, we systematically investigated how the membrane charge populations affect permselectivity by decoupling their effects from the impact of the pore structure using a multivariate strategy for constructing covalent-organic-framework membranes. The thermo-osmotic energy conversion efficiency is improved by increasing the membrane charge density, affording 210 W m with a temperature gradient of 40 K. However, this enhancement occurs only within a narrow window, and subsequently, the efficiency plateaued beyond a threshold density (0.04 C m). The complex interplay between pore-pore interactions in response to charge variations for ion transport across the upscaled nanoporous membranes helps explain the obtained results. This study has far-reaching implications for the rational design of ionic membranes to augment energy extraction rather than intuitively focusing on achieving high densities.

摘要

人们认为增加离子膜的电荷密度有利于产生高输出渗透能。在此,我们采用构建共价有机框架膜的多变量策略,通过将膜电荷分布的影响与孔结构的影响解耦,系统地研究了膜电荷分布如何影响渗透选择性。通过增加膜电荷密度提高了热渗透能量转换效率,在40K的温度梯度下可提供210W/m²。然而,这种增强仅在一个狭窄的范围内出现,随后,效率在超过阈值密度(0.04C/m²)后趋于平稳。对于跨尺度纳米多孔膜的离子传输,孔隙间相互作用响应电荷变化的复杂相互作用有助于解释所得到的结果。这项研究对于合理设计离子膜以增强能量提取具有深远意义,而不是直观地专注于实现高电荷密度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adec/9192728/3172bda226d6/41467_2022_31183_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验