Malali Noam, Keller Yosi
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):10252-10260. doi: 10.1109/TPAMI.2021.3132163. Epub 2022 Nov 7.
We present a deep learning approach for learning the joint semantic embeddings of images and captions in a euclidean space, such that the semantic similarity is approximated by the L distances in the embedding space. For that, we introduce a metric learning scheme that utilizes multitask learning to learn the embedding of identical semantic concepts using a center loss. By introducing a differentiable quantization scheme into the end-to-end trainable network, we derive a semantic embedding of semantically similar concepts in euclidean space. We also propose a novel metric learning formulation using an adaptive margin hinge loss, that is refined during the training phase. The proposed scheme was applied to the MS-COCO, Flicke30K and Flickr8K datasets, and was shown to compare favorably with contemporary state-of-the-art approaches.
我们提出了一种深度学习方法,用于在欧几里得空间中学习图像和标题的联合语义嵌入,使得语义相似度可以通过嵌入空间中的L距离来近似。为此,我们引入了一种度量学习方案,该方案利用多任务学习通过中心损失来学习相同语义概念的嵌入。通过将可微量化方案引入到端到端可训练网络中,我们在欧几里得空间中得到了语义相似概念的语义嵌入。我们还提出了一种使用自适应边际铰链损失的新颖度量学习公式,该公式在训练阶段进行了优化。所提出的方案应用于MS-COCO、Flicke30K和Flickr8K数据集,并被证明与当代最先进的方法相比具有优势。