Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur 492015, Chhattisgarh, India.
DTU Chemistry, Technical University of Denmark, Building 206, 2800 Kongens Lyngby, Denmark.
ACS Infect Dis. 2022 Jan 14;8(1):29-58. doi: 10.1021/acsinfecdis.1c00433. Epub 2021 Dec 2.
The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.
SARS-CoV-2 的刺突蛋白(S 蛋白)是使病毒能够感染人体细胞的蛋白质,它是许多疫苗的基础,也是病毒进化令人关注的热点。在这里,我们讨论了 S 蛋白结构特征方面的突出进展,以及这些结构如何促进对病毒功能和进化的分析。我们强调了报告的结构之间的差异,以及分析结构-功能关系对所使用结构的敏感性。我们表明,在几乎完整的结构中,平均残基溶剂暴露度是开放与闭合构象状态的良好描述符。由于功能重要的表面暴露残基的结构异质性,我们建议在得出关于特定结构-功能关系的结论之前,使用一组高质量蛋白质结构的平均值,而不是单个结构。为了说明这些要点,我们根据可用结构分析了 S 蛋白突出突变的一些重要化学趋势。在讨论新变体时,我们强调了与 ACE2 的结合选择性,而不是简单地分别考虑抗体逃逸或 ACE2 亲和力。我们注意到,较大的化学变化,特别是暴露表面残基的静电荷或侧链体积的增加,在令人关注的突变中反复出现,这可能与对人体 ACE2 负表面电势的适应有关。我们还发现迹象表明,主要变体中 S 蛋白的固定突变比平均预期的更稳定,这可能指向 S 蛋白的选择压力。所有这些情况的可用结构的丰富性为未来研究这些结构-功能关系提供了极其宝贵的基础。