Department of Microbial Pathogenesis, Yale Universitygrid.47100.32 School of Medicine, New Haven, Connecticut, USA.
Department of Cellular and Molecular Biology, University of Texas Health Science Center, Tyler, Texas, USA.
mBio. 2021 Feb 22;13(1):e0322721. doi: 10.1128/mbio.03227-21. Epub 2022 Feb 15.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) harbor mutations in the spike (S) glycoprotein that confer more efficient transmission and dampen the efficacy of COVID-19 vaccines and antibody therapies. S mediates virus entry and is the primary target for antibody responses, with structural studies of soluble S variants revealing an increased propensity toward conformations accessible to the human angiotensin-converting enzyme 2 (hACE2) receptor. However, real-time observations of conformational dynamics that govern the structural equilibriums of the S variants have been lacking. Here, we report single-molecule Förster resonance energy transfer (smFRET) studies of critical mutations observed in VOCs, including D614G and E484K, in the context of virus particles. Investigated variants predominately occupied more open hACE2-accessible conformations, agreeing with previous structures of soluble trimers. Additionally, these S variants exhibited slower transitions in hACE2-accessible/bound states. Our finding of increased S kinetic stability in the open conformation provides a new perspective on SARS-CoV-2 adaptation to the human population. SARS-CoV-2 surface S glycoprotein-the target of antibodies and vaccines-is responsible for binding to the cellular receptor hACE2. The interactions between S and hACE2 trigger structural rearrangements of S from closed to open conformations prerequisite for virus entry. Under the selection pressure imposed by adaptation to the human host and increasing vaccinations and convalescent patients, SARS-CoV-2 is evolving and has adopted numerous mutations on S variants. These promote virus spreading and immune evasion, partially by increasing the propensity of S to adopt receptor-binding competent open conformations. Here, we determined a time dimension, using smFRET to delineate the temporal prevalence of distinct structures of S in the context of virus particles. We present the first experimental evidence of decelerated transition dynamics from the open state, revealing increased stability of S open conformations to be part of the SARS-CoV-2 adaption strategies.
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的关注变种 (VOCs) 在刺突 (S) 糖蛋白中带有突变,这些突变赋予了它们更高的传播效率,并降低了 COVID-19 疫苗和抗体疗法的效果。S 介导病毒进入,是抗体反应的主要目标,可溶性 S 变体的结构研究揭示了它们更倾向于能够与人类血管紧张素转换酶 2 (hACE2) 受体结合的构象。然而,对于控制 S 变体结构平衡的构象动力学的实时观察仍然缺乏。在这里,我们报告了在病毒颗粒中对 VOC 中观察到的关键突变,包括 D614G 和 E484K,进行单分子荧光共振能量转移 (smFRET) 研究。研究的变体主要占据了更开放的 hACE2 可及构象,这与可溶性三聚体的先前结构一致。此外,这些 S 变体在 hACE2 可及/结合状态之间的转变较慢。我们发现开放构象中 S 的动力学稳定性增加,为 SARS-CoV-2 对人类种群的适应提供了新的视角。SARS-CoV-2 表面 S 糖蛋白——抗体和疫苗的靶标——负责与细胞受体 hACE2 结合。S 与 hACE2 之间的相互作用触发 S 从封闭到开放构象的结构重排,这是病毒进入的先决条件。在适应人类宿主、增加疫苗接种和康复患者的选择压力下,SARS-CoV-2 正在进化,并在 S 变体上采用了许多突变。这些突变促进了病毒的传播和免疫逃逸,部分原因是增加了 S 采用受体结合能力强的开放构象的倾向。在这里,我们使用 smFRET 来确定一个时间维度,以描绘病毒颗粒中 S 的不同结构在时间上的流行情况。我们首次提供了实验证据,证明从开放状态的转变动力学减慢,揭示了 S 开放构象的稳定性增加是 SARS-CoV-2 适应策略的一部分。