Suppr超能文献

基于正负离子高分辨质谱碎裂实验自建识别软件鉴定甘油磷脂。

Identification of glycerophospholipids using self-built recognition software based on positive and negative ion high-resolution mass spectrometric fragmentation experiments.

机构信息

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.

出版信息

Talanta. 2022 Feb 1;238(Pt 1):123006. doi: 10.1016/j.talanta.2021.123006. Epub 2021 Oct 29.

Abstract

Glycerophospholipids (GPs) have a wide variety and complex structure, which makes their identification challenging. Our software affords a novel tool for the automated identification of non-target GPs in biological mixtures. Here, we explored the multi-stage fragmentation processes of GPs in positive and negative ion modes, and then constructed multi-stage fragment ion databases. This database includes 8214 simulated GP molecules from a random combination of fatty acids corresponding to 42,439 self-built predicted multi-stage fragment ions in positive ion mode and 31,487 self-built predicted multi-stage fragment ions in negative ion mode (MS ≤ 3). The automatic GP identification (AGPI) software can screen out GP candidates utilizing the MS accurate mass. The isomers of fatty acid chains and the phosphoryl head group can be distinguished using the MS and MS fragment spectra in positive-ion and negative-ion modes. All of the selected 45 GP standards were putatively identified using AGPI software; however, there were false positives because the software cannot distinguish positional isomers of fatty acids. Therefore, the AGPI software could be applied to identify GPs in samples, such as cancer cells; we successfully identified 41 GPs in cancer cells.

摘要

甘油磷脂(GPs)种类繁多,结构复杂,这使得它们的鉴定具有挑战性。我们的软件为生物混合物中非靶向 GP 的自动鉴定提供了一种新的工具。在这里,我们探索了正离子和负离子模式下 GP 的多阶段碎裂过程,然后构建了多阶段碎片离子数据库。该数据库包含 8214 个模拟 GP 分子,它们是由对应于 42439 个自建预测的正离子模式下的多阶段碎片离子和 31487 个自建预测的负离子模式下的多阶段碎片离子(MS≤3)的脂肪酸随机组合而成。自动 GP 鉴定(AGPI)软件可以利用 MS 精确质量筛选出 GP 候选物。正离子和负离子模式下的 MS 和 MS 碎片谱可用于区分脂肪酸链和磷酸基头部的异构体。使用 AGPI 软件对所有选定的 45 个 GP 标准品进行了假定鉴定;然而,由于软件无法区分脂肪酸的位置异构体,因此存在假阳性。因此,AGPI 软件可应用于鉴定癌细胞等样品中的 GP;我们成功鉴定了癌细胞中的 41 种 GP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验