Ren Zhiwei, Liu Kuan, Hu Hanlin, Guo Xuyun, Gao Yajun, Fong Patrick W K, Liang Qiong, Tang Hua, Huang Jiaming, Zhang Hengkai, Qin Minchao, Cui Li, Chandran Hrisheekesh Thachoth, Shen Dong, Lo Ming-Fai, Ng Annie, Surya Charles, Shao Minhua, Lee Chun-Sing, Lu Xinhui, Laquai Frédéric, Zhu Ye, Li Gang
Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
Department of Electrical and Computer Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan.
Light Sci Appl. 2021 Dec 2;10(1):239. doi: 10.1038/s41377-021-00676-6.
The benchmark tin oxide (SnO) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However, the energy loss is still a challenge due to the lack of "hidden interface" control. We report a novel ligand-tailored ultrafine SnO quantum dots (QDs) via a facile rapid room temperature synthesis. Importantly, the ligand-tailored SnO QDs ETL with multi-functional terminal groups in situ refines the buried interfaces with both the perovskite and transparent electrode via enhanced interface binding and perovskite passivation. These novel ETLs induce synergistic effects of physical and chemical interfacial modulation and preferred perovskite crystallization-directing, delivering reduced interface defects, suppressed non-radiative recombination and elongated charge carrier lifetime. Power conversion efficiency (PCE) of 23.02% (0.04 cm) and 21.6% (0.98 cm, V loss: 0.336 V) have been achieved for the blade-coated PSCs (1.54 eV E) with our new ETLs, representing a record for SnO based blade-coated PSCs. Moreover, a substantially enhanced PCE (V) from 20.4% (1.15 V) to 22.8% (1.24 V, 90 mV higher V, 0.04 cm device) in the blade-coated 1.61 eV PSCs system, via replacing the benchmark commercial colloidal SnO with our new ETLs.
基准氧化锡(SnO)电子传输层(ETL)已使平面钙钛矿太阳能电池(PSC)取得了显著进展。然而,由于缺乏“隐藏界面”控制,能量损失仍是一个挑战。我们通过简便的快速室温合成方法报道了一种新型的配体定制超细SnO量子点(QD)。重要的是,具有多功能端基的配体定制SnO QD ETL通过增强界面结合和钙钛矿钝化作用,原位优化了与钙钛矿和透明电极的掩埋界面。这些新型ETL引发了物理和化学界面调制的协同效应以及优选的钙钛矿结晶导向作用,减少了界面缺陷,抑制了非辐射复合并延长了电荷载流子寿命。使用我们的新型ETL,对于刮刀涂布的PSC(1.54 eV E),功率转换效率(PCE)分别达到了23.02%(0.04 cm)和21.6%(0.98 cm,V损失:0.336 V),这代表了基于SnO的刮刀涂布PSC的记录。此外,在刮刀涂布的1.61 eV PSCs系统中,通过用我们的新型ETL替代基准商业胶体SnO,PCE(V)从20.4%(1.15 V)大幅提高到22.8%(1.24 V,V高90 mV,0.04 cm器件)。