Suppr超能文献

超薄膜 SnO 缓冲层助力高效量子结光伏。

Ultra-Thin SnO Buffer Layer Enables High-Efficiency Quantum Junction Photovoltaics.

机构信息

Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, P.R. China.

Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.

出版信息

Adv Sci (Weinh). 2022 Dec;9(36):e2204725. doi: 10.1002/advs.202204725. Epub 2022 Oct 26.

Abstract

Solution-processed solar cells are promising for the cost-effective, high-throughput production of photovoltaic devices. Colloidal quantum dots (CQDs) are attractive candidate materials for efficient, solution-processed solar cells, potentially realizing the broad-spectrum light utilization and multi-exciton generation effect for the future efficiency breakthrough of solar cells. The emerging quantum junction solar cells (QJSCs), constructed by n- and p-type CQDs only, open novel avenue for all-quantum-dot photovoltaics with a simplified device configuration and convenient processing technology. However, the development of high-efficiency QJSCs still faces the challenge of back carrier diffusion induced by the huge carrier density drop at the interface of CQDs and conductive glass substrate. Herein, an ultra-thin atomic layer deposited tin oxide (SnO ) layer is employed to buffer this carrier density drop, significantly reducing the interfacial recombination and capacitance caused by the back carrier diffusion. The SnO -modified QJSC achieves a record-high efficiency of 11.55% and a suppressed hysteresis factor of 0.04 in contrast with reference QJSC with an efficiency of 10.4% and hysteresis factor of 0.48. This work clarifies the critical effect of interfacial issues on the carrier recombination and hysteresis of QJSCs, and provides an effective pathway to design high-performance all-quantum-dot devices.

摘要

溶液处理的太阳能电池对于具有成本效益、高通量的光伏器件生产具有广阔的前景。胶体量子点(CQDs)是高效、溶液处理的太阳能电池的有吸引力的候选材料,有可能实现宽光谱光利用和多激子产生效应,为太阳能电池的未来效率突破提供可能。由 n 型和 p 型 CQDs 构建的新兴量子结太阳能电池(QJSCs)为全量子点光伏开辟了新途径,具有简化的器件结构和方便的处理技术。然而,高效 QJSCs 的发展仍然面临着由 CQDs 和导电玻璃基底界面处的巨大载流子密度下降引起的背载流子扩散的挑战。在此,采用超薄原子层沉积氧化锡(SnO )层来缓冲这种载流子密度下降,显著降低了由背载流子扩散引起的界面复合和电容。与效率为 10.4%、滞后因子为 0.48 的参考 QJSC 相比,SnO 修饰的 QJSC 实现了 11.55%的创纪录高效率和 0.04 的抑制滞后因子。这项工作阐明了界面问题对 QJSCs 载流子复合和滞后的关键影响,并为设计高性能全量子点器件提供了一条有效途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c35/9799018/c95fa7e4edc3/ADVS-9-2204725-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验