School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, UK.
Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
Sci Rep. 2021 Dec 2;11(1):23279. doi: 10.1038/s41598-021-02466-x.
Recently, several convolutional neural networks have been proposed not only for 2D images, but also for 3D and 4D volume segmentation. Nevertheless, due to the large data size of the latter, acquiring a sufficient amount of training annotations is much more strenuous than in 2D images. For 4D time-series tomograms, this is usually handled by segmenting the constituent tomograms independently through time with 3D convolutional neural networks. Inter-volume information is therefore not utilized, potentially leading to temporal incoherence. In this paper, we attempt to resolve this by proposing two hidden Markov model variants that refine 4D segmentation labels made by 3D convolutional neural networks working on each time point. Our models utilize not only inter-volume information, but also the prediction confidence generated by the 3D segmentation convolutional neural networks themselves. To the best of our knowledge, this is the first attempt to refine 4D segmentations made by 3D convolutional neural networks using hidden Markov models. During experiments we test our models, qualitatively, quantitatively and behaviourally, using prespecified segmentations. We demonstrate in the domain of time series tomograms which are typically undersampled to allow more frequent capture; a particularly challenging problem. Finally, our dataset and code is publicly available.
最近,已经提出了几个卷积神经网络,不仅用于 2D 图像,也用于 3D 和 4D 体积分割。然而,由于后者的数据量较大,获取足够数量的训练注释比在 2D 图像中要困难得多。对于 4D 时间序列断层扫描,这通常通过使用 3D 卷积神经网络通过时间独立地分割组成的断层扫描来处理。因此,没有利用体积间的信息,这可能导致时间上的不一致。在本文中,我们尝试通过提出两个隐藏马尔可夫模型变体来解决这个问题,这些变体通过在每个时间点上工作的 3D 卷积神经网络细化 4D 分割标签。我们的模型不仅利用了体积间的信息,还利用了 3D 分割卷积神经网络本身生成的预测置信度。据我们所知,这是首次尝试使用隐藏马尔可夫模型来细化 3D 卷积神经网络做出的 4D 分割。在实验中,我们使用预定义的分割对我们的模型进行了定性、定量和行为评估。我们在时间序列断层扫描领域展示了我们的模型,这些断层扫描通常是欠采样的,以允许更频繁的捕获,这是一个特别具有挑战性的问题。最后,我们的数据集和代码是公开可用的。