Suppr超能文献

基于特征选择分类的主成分分析优化树策略在新生儿黄疸症状中的应用。

Optimized Tree Strategy with Principal Component Analysis Using Feature Selection-Based Classification for Newborn Infant's Jaundice Symptoms.

机构信息

Department of Computer Science, CHRIST Deemed to be University, Bangalore, India.

Department of Computer Science, PPG College of Arts and Science, Coimbatore, India.

出版信息

J Healthc Eng. 2021 Nov 23;2021:9806011. doi: 10.1155/2021/9806011. eCollection 2021.

Abstract

One of the most important and difficult research fields is newborn jaundice grading. The mitotic count is an important component in determining the severity of newborn jaundice. The use of principal component analysis (PCA) feature selection and an optimal tree strategy classifier to produce automatic mitotic detection in histopathology images and grading is given. This study makes use of real-time and benchmark datasets, as well as specific approaches for detecting jaundice in newborn newborns. According to research, the quality of the feature may have a negative impact on categorization performance. Additionally, compressing the classification method for exclusive main properties can result in a classification performance bottleneck. As a result, identifying appropriate characteristics for training the classifier is required. By combining a feature selection method with a classification model, this is possible. The major outcomes of this study revealed that image processing techniques are critical for predicting neonatal hyperbilirubinemia. Image processing is a method of translating analogue images to digital formats and manipulating them. The primary goal of medical image processing is to collect information useful for disease detection, diagnosis, monitoring, and therapy. Image datasets can be used to validate the performance of newborn jaundice detection. When compared to conventional approaches, it offers results that are accurate, quick, and time efficient. Accuracy, sensitivity, and specificity, which are common performance indicators, were also predictive.

摘要

新生儿黄疸分级是最具挑战性和最重要的研究领域之一。有丝分裂计数是判断新生儿黄疸严重程度的重要组成部分。本文提出了一种基于主成分分析(PCA)特征选择和最优树策略分类器的新生儿黄疸分级的自动有丝分裂检测方法。该研究使用了实时数据集和基准数据集,以及特定的新生儿黄疸检测方法。研究表明,特征的质量可能会对分类性能产生负面影响。此外,压缩分类方法以保留主要属性可能会导致分类性能瓶颈。因此,需要为分类器训练选择合适的特征。通过结合特征选择方法和分类模型,可以实现这一点。该研究的主要结果表明,图像处理技术对于预测新生儿高胆红素血症至关重要。图像处理是将模拟图像转换为数字格式并对其进行处理的方法。医学图像处理的主要目标是收集有助于疾病检测、诊断、监测和治疗的信息。可以使用图像数据集来验证新生儿黄疸检测的性能。与传统方法相比,它具有准确、快速和高效的特点。常用的性能指标,如准确性、灵敏度和特异性,也具有预测性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c62/8632394/7d52003b0e08/JHE2021-9806011.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验