School of Computer Science and Engineering, Dalian Minzu University, Dalian, China.
Key Lab of Advanced Design and Intelligent Computing (Ministry of Education), Dalian University, Dalian, China.
NMR Biomed. 2022 May;35(5):e4657. doi: 10.1002/nbm.4657. Epub 2021 Dec 3.
Automatic brain tumor segmentation on MRI is a prerequisite to provide a quantitative and intuitive assistance for clinical diagnosis and treatment. Meanwhile, 3D deep neural network related brain tumor segmentation models have demonstrated considerable accuracy improvement over corresponding 2D methodologies. However, 3D brain tumor segmentation models generally suffer from high computation cost. Motivated by a recently proposed 3D dilated multi-fiber network (DMF-Net) architecture that pays more attention to reduction of computation cost, we present in this work a novel encoder-decoder neural network, ie a 3D asymmetric expectation-maximization attention network (AEMA-Net), to automatically segment brain tumors. We modify DMF-Net by introducing an asymmetric convolution block into a multi-fiber unit and a dilated multi-fiber unit to capture more powerful deep features for the brain tumor segmentation. In addition, AEMA-Net further incorporates an expectation-maximization attention (EMA) module into the DMF-Net by embedding the EMA block in the third stage of skip connection, which focuses on capturing the long-range dependence of context. We extensively evaluate AEMA-Net on three MRI brain tumor segmentation benchmarks of BraTS 2018, 2019 and 2020 datasets. Experimental results demonstrate that AEMA-Net outperforms both 3D U-Net and DMF-Net, and it achieves competitive performance compared with the state-of-the-art brain tumor segmentation methods.
自动脑肿瘤磁共振成像分割是为临床诊断和治疗提供定量和直观辅助的前提。同时,与相应的 2D 方法相比,3D 深度神经网络相关的脑肿瘤分割模型已经证明了相当大的准确性提高。然而,3D 脑肿瘤分割模型通常受到高计算成本的限制。受最近提出的 3D 扩张多纤维网络 (DMF-Net) 架构的启发,该架构更加注重降低计算成本,我们在这项工作中提出了一种新的编码器-解码器神经网络,即 3D 非对称期望最大化注意力网络 (AEMA-Net),用于自动分割脑肿瘤。我们通过在多纤维单元和扩张多纤维单元中引入非对称卷积块来修改 DMF-Net,以捕获用于脑肿瘤分割的更强大的深度特征。此外,AEMA-Net 通过在跳过连接的第三阶段嵌入 EMA 块,将期望最大化注意力 (EMA) 模块进一步引入到 DMF-Net 中,该模块专注于捕获上下文的远程依赖关系。我们在 BraTS 2018、2019 和 2020 数据集的三个 MRI 脑肿瘤分割基准上对 AEMA-Net 进行了广泛评估。实验结果表明,AEMA-Net 优于 3D U-Net 和 DMF-Net,并且与最先进的脑肿瘤分割方法相比具有竞争力。