IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):5570-5579. doi: 10.1109/TNNLS.2021.3129772. Epub 2023 Sep 1.
Determining microRNA (miRNA)-disease associations (MDAs) is an integral part in the prevention, diagnosis, and treatment of complex diseases. However, wet experiments to discern MDAs are inefficient and expensive. Hence, the development of reliable and efficient data integrative models for predicting MDAs is of significant meaning. In the present work, a novel deep learning method for predicting MDAs through deep autoencoder with multiple kernel learning (DAEMKL) is presented. Above all, DAEMKL applies multiple kernel learning (MKL) in miRNA space and disease space to construct miRNA similarity network and disease similarity network, respectively. Then, for each disease or miRNA, its feature representation is learned from the miRNA similarity network and disease similarity network via the regression model. After that, the integrated miRNA feature representation and disease feature representation are input into deep autoencoder (DAE). Furthermore, the novel MDAs are predicted through reconstruction error. Ultimately, the AUC results show that DAEMKL achieves outstanding performance. In addition, case studies of three complex diseases further prove that DAEMKL has excellent predictive performance and can discover a large number of underlying MDAs. On the whole, our method DAEMKL is an effective method to identify MDAs.
确定 microRNA(miRNA)-疾病关联(MDA)是预防、诊断和治疗复杂疾病的重要组成部分。然而,识别 MDA 的湿实验效率低下且昂贵。因此,开发可靠有效的 MDA 预测数据综合模型具有重要意义。在本工作中,提出了一种通过具有多内核学习的深度自动编码器(DAEMKL)进行 MDA 预测的新型深度学习方法。首先,DAEMKL 在 miRNA 空间和疾病空间中应用多内核学习(MKL),分别构建 miRNA 相似性网络和疾病相似性网络。然后,对于每个疾病或 miRNA,通过回归模型从 miRNA 相似性网络和疾病相似性网络中学习其特征表示。之后,将整合的 miRNA 特征表示和疾病特征表示输入到深度自动编码器(DAE)中。最后,通过重建误差预测新的 MDA。最终,AUC 结果表明 DAEMKL 具有出色的性能。此外,三种复杂疾病的案例研究进一步证明了 DAEMKL 具有出色的预测性能,可以发现大量潜在的 MDA。总的来说,我们的方法 DAEMKL 是一种识别 MDA 的有效方法。