Suppr超能文献

“感染 COVID-19 的风险有多大?”:公众参与为 COVID-19“高危”人群提供死亡率风险信息(OurRisk.CoV)。

'What is the risk to me from COVID-19?': Public involvement in providing mortality risk information for people with 'high-risk' conditions for COVID-19 (OurRisk.CoV).

机构信息

University College London, London, UK, honorary consultant cardiologist, University College London Hospitals NHS Trust, London, UK, and honorary consultant cardiologist, Barts Health NHS Trust, London, UK

University College London, London, UK.

出版信息

Clin Med (Lond). 2021 Nov;21(6):e620-e628. doi: 10.7861/clinmed.2021-0386.

Abstract

Patients and public have sought mortality risk information throughout the pandemic, but their needs may not be served by current risk prediction tools. Our mixed methods study involved: (1) systematic review of published risk tools for prognosis, (2) provision and patient testing of new mortality risk estimates for people with high-risk conditions and (3) iterative patient and public involvement and engagement with qualitative analysis. Only one of 53 (2%) previously published risk tools involved patients or the public, while 11/53 (21%) had publicly accessible portals, but all for use by clinicians and researchers.Among people with a wide range of underlying conditions, there has been sustained interest and engagement in accessible and tailored, pre- and postpandemic mortality information. Informed by patient feedback, we provide such information in 'five clicks' (https://covid19-phenomics.org/OurRiskCoV.html), as context for decision making and discussions with health professionals and family members. Further development requires curation and regular updating of NHS data and wider patient and public engagement.

摘要

患者和公众在整个疫情期间都寻求死亡风险信息,但当前的风险预测工具可能无法满足他们的需求。我们的混合方法研究包括:(1)对已发表的预后风险工具进行系统评价,(2)为高风险人群提供并测试新的死亡率风险估计,以及(3)迭代的患者和公众参与以及定性分析。在 53 个之前发表的风险工具中,只有 1 个(2%)涉及患者或公众,而 11/53 个(21%)有公开的门户,但均供临床医生和研究人员使用。在有广泛潜在疾病的人群中,对可访问和定制的、大流行前后的死亡率信息一直保持着兴趣和参与。根据患者的反馈,我们在“五个点击”(https://covid19-phenomics.org/OurRiskCoV.html)中提供此类信息,作为决策和与卫生专业人员和家庭成员讨论的背景。进一步的发展需要 NHS 数据的策展和定期更新,以及更广泛的患者和公众参与。

相似文献

5
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2020 Jun 25;6(6):CD013652. doi: 10.1002/14651858.CD013652.
7
Communication to promote and support physical distancing for COVID-19 prevention and control.
Cochrane Database Syst Rev. 2023 Oct 9;10(10):CD015144. doi: 10.1002/14651858.CD015144.
10
Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19.
Cochrane Database Syst Rev. 2021 Feb 12;2(2):CD013587. doi: 10.1002/14651858.CD013587.pub2.

引用本文的文献

1
Research across multiple disciplines to respond to health shocks.
BMJ. 2024 Oct 7;387:e078445. doi: 10.1136/bmj-2023-078445.
2
COVID-19 Public Health Measures and Patient and Public Involvement in Health and Social Care Research: An Umbrella Review.
Int J Environ Res Public Health. 2023 Mar 10;20(6):4887. doi: 10.3390/ijerph20064887.
4
Seeing what others see while thinking what others have not.
Clin Med (Lond). 2021 Nov;21(6):e559-e560. doi: 10.7861/clinmed.ed.21.6.1.

本文引用的文献

2
Excess deaths in people with cardiovascular diseases during the COVID-19 pandemic.
Eur J Prev Cardiol. 2021 Dec 20;28(14):1599-1609. doi: 10.1093/eurjpc/zwaa155.
3
Co-production of knowledge: the future.
BMJ. 2021 Feb 16;372:n434. doi: 10.1136/bmj.n434.
4
What's your risk of catching COVID? These tools help you to find out.
Nature. 2021 Jan;589(7840):158-159. doi: 10.1038/d41586-020-03637-y.
6
Perspectives of VA Primary Care Clinicians Toward Electronic Consultation-Related Workload Burden: A Qualitative Analysis.
JAMA Netw Open. 2020 Oct 1;3(10):e2018104. doi: 10.1001/jamanetworkopen.2020.18104.
9
Two metres or one: what is the evidence for physical distancing in covid-19?
BMJ. 2020 Aug 25;370:m3223. doi: 10.1136/bmj.m3223.
10
Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study.
Lancet Diabetes Endocrinol. 2020 Oct;8(10):813-822. doi: 10.1016/S2213-8587(20)30272-2. Epub 2020 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验