Suppr超能文献

利用国家电子健康记录进行大流行准备:验证一种用于预测 COVID-19 患者超额死亡的简约模型的有效性——一项数据驱动的回顾性队列研究。

Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19-a data-driven retrospective cohort study.

机构信息

Institute of Health Informatics, University College London, London NW1 2DA, UK.

BHF Data Science Centre, Health Data Research UK, London, NW1 2BE, UK.

出版信息

J R Soc Med. 2023 Jan;116(1):10-20. doi: 10.1177/01410768221131897. Epub 2022 Nov 14.

Abstract

OBJECTIVES

To use national, pre- and post-pandemic electronic health records (EHR) to develop and validate a scenario-based model incorporating baseline mortality risk, infection rate (IR) and relative risk (RR) of death for prediction of excess deaths.

DESIGN

An EHR-based, retrospective cohort study.

SETTING

Linked EHR in Clinical Practice Research Datalink (CPRD); and linked EHR and COVID-19 data in England provided in NHS Digital Trusted Research Environment (TRE).

PARTICIPANTS

In the development (CPRD) and validation (TRE) cohorts, we included 3.8 million and 35.1 million individuals aged ≥30 years, respectively.

MAIN OUTCOME MEASURES

One-year all-cause excess deaths related to COVID-19 from March 2020 to March 2021.

RESULTS

From 1 March 2020 to 1 March 2021, there were 127,020 observed excess deaths. Observed RR was 4.34% (95% CI, 4.31-4.38) and IR was 6.27% (95% CI, 6.26-6.28). In the validation cohort, predicted one-year excess deaths were 100,338 compared with the observed 127,020 deaths with a ratio of predicted to observed excess deaths of 0.79.

CONCLUSIONS

We show that a simple, parsimonious model incorporating baseline mortality risk, one-year IR and RR of the pandemic can be used for scenario-based prediction of excess deaths in the early stages of a pandemic. Our analyses show that EHR could inform pandemic planning and surveillance, despite limited use in emergency preparedness to date. Although infection dynamics are important in the prediction of mortality, future models should take greater account of underlying conditions.

摘要

目的

利用全国范围内、大流行前后的电子健康记录(EHR),开发并验证一种基于情景的模型,该模型纳入了基线死亡率风险、感染率(IR)和大流行期间的相对死亡风险(RR),以预测超额死亡人数。

设计

基于 EHR 的回顾性队列研究。

设置

临床实践研究数据链(CPRD)中的 EHR 链接;以及英格兰 NHS 数字信托研究环境(TRE)中提供的 EHR 和 COVID-19 数据链接。

参与者

在开发(CPRD)和验证(TRE)队列中,我们分别纳入了年龄≥30 岁的 380 万人和 3510 万人。

主要观察指标

2020 年 3 月至 2021 年 3 月期间与 COVID-19 相关的 1 年全因超额死亡人数。

结果

从 2020 年 3 月 1 日至 2021 年 3 月 1 日,观察到 127020 例超额死亡。观察到的 RR 为 4.34%(95%CI,4.31-4.38),IR 为 6.27%(95%CI,6.26-6.28)。在验证队列中,预测的 1 年超额死亡人数为 100338 例,而观察到的死亡人数为 127020 例,预测超额死亡人数与观察到的超额死亡人数之比为 0.79。

结论

我们表明,一种简单、简约的模型,纳入基线死亡率风险、大流行期间的 1 年 IR 和 RR,可以用于大流行早期基于情景的超额死亡预测。我们的分析表明,尽管迄今为止在应急准备中 EHR 的使用有限,但 EHR 可以为大流行规划和监测提供信息。尽管感染动态对死亡率预测很重要,但未来的模型应更多地考虑潜在条件。

相似文献

2
A retrospective cohort study predicting and validating impact of the COVID-19 pandemic in individuals with chronic kidney disease.
Kidney Int. 2022 Sep;102(3):652-660. doi: 10.1016/j.kint.2022.05.015. Epub 2022 Jun 17.
6
Child Mortality in England During the First 2 Years of the COVID-19 Pandemic.
JAMA Netw Open. 2023 Jan 3;6(1):e2249191. doi: 10.1001/jamanetworkopen.2022.49191.
10
Excess mortality in England and Wales during the first wave of the COVID-19 pandemic.
J Epidemiol Community Health. 2021 Mar;75(3):213-223. doi: 10.1136/jech-2020-214764. Epub 2020 Oct 15.

引用本文的文献

1
2023: Another year of technology and Big Data?
J R Soc Med. 2023 Jan;116(1):3. doi: 10.1177/01410768221147853.

本文引用的文献

1
COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records.
Lancet Digit Health. 2022 Jul;4(7):e542-e557. doi: 10.1016/S2589-7500(22)00091-7. Epub 2022 Jun 9.
7
Excess deaths in people with cardiovascular diseases during the COVID-19 pandemic.
Eur J Prev Cardiol. 2021 Dec 20;28(14):1599-1609. doi: 10.1093/eurjpc/zwaa155.
10
Predictors and Outcomes of Hospitalization for Influenza: Real-World Evidence from the United States Medicare Population.
Infect Dis Ther. 2021 Mar;10(1):213-228. doi: 10.1007/s40121-020-00354-x. Epub 2020 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验