Institute of Health Informatics, University College London, London NW1 2DA, UK.
BHF Data Science Centre, Health Data Research UK, London, NW1 2BE, UK.
J R Soc Med. 2023 Jan;116(1):10-20. doi: 10.1177/01410768221131897. Epub 2022 Nov 14.
To use national, pre- and post-pandemic electronic health records (EHR) to develop and validate a scenario-based model incorporating baseline mortality risk, infection rate (IR) and relative risk (RR) of death for prediction of excess deaths.
An EHR-based, retrospective cohort study.
Linked EHR in Clinical Practice Research Datalink (CPRD); and linked EHR and COVID-19 data in England provided in NHS Digital Trusted Research Environment (TRE).
In the development (CPRD) and validation (TRE) cohorts, we included 3.8 million and 35.1 million individuals aged ≥30 years, respectively.
One-year all-cause excess deaths related to COVID-19 from March 2020 to March 2021.
From 1 March 2020 to 1 March 2021, there were 127,020 observed excess deaths. Observed RR was 4.34% (95% CI, 4.31-4.38) and IR was 6.27% (95% CI, 6.26-6.28). In the validation cohort, predicted one-year excess deaths were 100,338 compared with the observed 127,020 deaths with a ratio of predicted to observed excess deaths of 0.79.
We show that a simple, parsimonious model incorporating baseline mortality risk, one-year IR and RR of the pandemic can be used for scenario-based prediction of excess deaths in the early stages of a pandemic. Our analyses show that EHR could inform pandemic planning and surveillance, despite limited use in emergency preparedness to date. Although infection dynamics are important in the prediction of mortality, future models should take greater account of underlying conditions.
利用全国范围内、大流行前后的电子健康记录(EHR),开发并验证一种基于情景的模型,该模型纳入了基线死亡率风险、感染率(IR)和大流行期间的相对死亡风险(RR),以预测超额死亡人数。
基于 EHR 的回顾性队列研究。
临床实践研究数据链(CPRD)中的 EHR 链接;以及英格兰 NHS 数字信托研究环境(TRE)中提供的 EHR 和 COVID-19 数据链接。
在开发(CPRD)和验证(TRE)队列中,我们分别纳入了年龄≥30 岁的 380 万人和 3510 万人。
2020 年 3 月至 2021 年 3 月期间与 COVID-19 相关的 1 年全因超额死亡人数。
从 2020 年 3 月 1 日至 2021 年 3 月 1 日,观察到 127020 例超额死亡。观察到的 RR 为 4.34%(95%CI,4.31-4.38),IR 为 6.27%(95%CI,6.26-6.28)。在验证队列中,预测的 1 年超额死亡人数为 100338 例,而观察到的死亡人数为 127020 例,预测超额死亡人数与观察到的超额死亡人数之比为 0.79。
我们表明,一种简单、简约的模型,纳入基线死亡率风险、大流行期间的 1 年 IR 和 RR,可以用于大流行早期基于情景的超额死亡预测。我们的分析表明,尽管迄今为止在应急准备中 EHR 的使用有限,但 EHR 可以为大流行规划和监测提供信息。尽管感染动态对死亡率预测很重要,但未来的模型应更多地考虑潜在条件。