Li Zeshen, Guo Fan, Pang Kai, Lin Jiahao, Gao Qiang, Chen Yance, Chang Dan, Wang Ya, Liu Senping, Han Yi, Liu Yingjun, Xu Zhen, Gao Chao
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, 1 Guanghua Road, Nanjing, 210094, People's Republic of China.
Nanomicro Lett. 2021 Dec 4;14(1):12. doi: 10.1007/s40820-021-00755-8.
The processing capability is vital for the wide applications of materials to forge structures as-demand. Graphene-based macroscopic materials have shown excellent mechanical and functional properties. However, different from usual polymers and metals, graphene solids exhibit limited deformability and processibility for precise forming. Here, we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide (GO) precursor. The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains. We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity, which becomes the criteria for thermal plastic forming of GO solids. By thermoplastic forming, the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm. The plastic-formed structures maintain the structural integration with outstanding electrical (3.07 × 10 S m) and thermal conductivity (745.65 W m K) after removal of polymers. The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
加工能力对于按需锻造结构的材料的广泛应用至关重要。基于石墨烯的宏观材料已展现出优异的机械性能和功能特性。然而,与常见的聚合物和金属不同,石墨烯固体在精确成型方面表现出有限的可变形性和可加工性。在此,我们展示了一种通过从氧化石墨烯(GO)前驱体进行聚合物插层来实现石墨烯材料精确热塑性成型的方法。插层聚合物通过聚合物链的热激活运动使GO固体具有热塑性。我们检测到插层聚合物的临界最小含量,其可使层间距扩展超过1.4纳米以激活热塑性,这成为GO固体热塑性成型的标准。通过热塑性成型,扁平的GO复合薄膜被锻造成高斯曲面形状,并被压印出尺寸精度低至360纳米的表面浮雕图案。去除聚合物后,塑性成型结构保持结构完整性,并具有出色的电导率(3.07×10 S m)和热导率(745.65 W m K)。热塑性策略极大地扩展了GO材料和其他层状材料的成型能力,并有望实现更广泛应用的多功能结构设计。