Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Department of Ultrasound, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
Int J Cardiol. 2024 Dec 1;416:132504. doi: 10.1016/j.ijcard.2024.132504. Epub 2024 Aug 30.
Assessing left ventricular diastolic function (LVDF) with echocardiography as per ASE guidelines is tedious and time-consuming. The study aims to develop a fully automatic approach of this procedure by a lightweight hybrid algorithm combining deep learning (DL) and machine learning (ML).
The model features multi-modality input and multi-task output, measuring LV ejection fraction (LVEF), left atrial end-systolic volume (LAESV), and Doppler parameters: mitral E wave velocity (E), A wave velocity (A), mitral annulus e' velocity (e'), and tricuspid regurgitation velocity (TRmax). The algorithm was trained and tested on two internal datasets (862 and 239 echocardiograms) and validated using three external datasets, including EchoNet-Dynamic and CAMUS. The ASE diastolic function decision tree and total probability theory were used to provide diastolic grading probabilities.
The algorithm, named MMnet, demonstrated high accuracy in both test and validation datasets, with Dice coefficients for segmentation between 0.922 and 0.932 and classification accuracies between 0.9977 and 1.0. The mean absolute errors (MAEs) for LVEF and LAESV were 3.7 % and 5.8 ml, respectively, and for LVEF in external validation, MAEs ranged from 4.9 % to 5.6 %. The diastolic function grading accuracy was 0.88 with hard criteria and up to 0.98 with soft criteria which account for the top two probability in total probability theory.
MMnet can automatically grade ASE diastolic function with high accuracy and efficiency by annotating 2D videos and Doppler images.
根据 ASE 指南评估左心室舒张功能(LVDF)既繁琐又耗时。本研究旨在通过结合深度学习(DL)和机器学习(ML)的轻量级混合算法,为该过程开发一种全自动方法。
该模型具有多模态输入和多任务输出功能,可测量左心室射血分数(LVEF)、左心房收缩末期容积(LAESV)和多普勒参数:二尖瓣 E 波速度(E)、A 波速度(A)、二尖瓣环 e'速度(e')和三尖瓣反流速度(TRmax)。该算法在两个内部数据集(862 和 239 个超声心动图)上进行了训练和测试,并使用包括 EchoNet-Dynamic 和 CAMUS 在内的三个外部数据集进行了验证。ASE 舒张功能决策树和总概率理论用于提供舒张分级概率。
该算法名为 MMnet,在测试和验证数据集上均表现出很高的准确性,分割的 Dice 系数在 0.922 到 0.932 之间,分类准确率在 0.9977 到 1.0 之间。LVEF 和 LAESV 的平均绝对误差(MAE)分别为 3.7%和 5.8 ml,而在外部验证中,LVEF 的 MAE 范围在 4.9%到 5.6%之间。硬标准的舒张功能分级准确率为 0.88,总概率理论中最高概率占比达到 0.98。
MMnet 通过对 2D 视频和多普勒图像进行标注,能够以高精度和高效率自动对 ASE 舒张功能进行分级。