Holste Gregory, Oikonomou Evangelos K, Tokodi Márton, Kovács Attila, Wang Zhangyang, Khera Rohan
Department of Electrical and Computer Engineering, The University of Texas at Austin.
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.
JAMA. 2025 Jun 23. doi: 10.1001/jama.2025.8731.
Echocardiography is a cornerstone of cardiovascular care, but relies on expert interpretation and manual reporting from a series of videos. An artificial intelligence (AI) system, PanEcho, has been proposed to automate echocardiogram interpretation with multitask deep learning.
To develop and evaluate the accuracy of an AI system on a comprehensive set of 39 labels and measurements on transthoracic echocardiography (TTE).
DESIGN, SETTING, AND PARTICIPANTS: This study represents the development and retrospective, multisite validation of an AI system. PanEcho was developed using TTE studies conducted at Yale New Haven Health System (YNHHS) hospitals and clinics from January 2016 to June 2022 during routine care. The model was internally validated in a temporally distinct YNHHS cohort from July to December 2022, externally validated across 4 diverse external cohorts, and publicly released.
The primary outcome was the area under the receiver operating characteristic curve (AUC) for diagnostic classification tasks and mean absolute error for parameter estimation tasks, comparing AI predictions with the assessment of the interpreting cardiologist.
This study included 1.2 million echocardiographic videos from 32 265 TTE studies of 24 405 patients across YNHHS hospitals and clinics. The AI system performed 18 diagnostic classification tasks with a median (IQR) AUC of 0.91 (0.88-0.93) and estimated 21 echocardiographic parameters with a median (IQR) normalized mean absolute error of 0.13 (0.10-0.18) in internal validation. For instance, the model accurately estimated left ventricular ejection fraction (mean absolute error: 4.2% internal; 4.5% external) and detected moderate or worse left ventricular systolic dysfunction (AUC: 0.98 internal; 0.99 external), right ventricular systolic dysfunction (AUC: 0.93 internal; 0.94 external), and severe aortic stenosis (AUC: 0.98 internal; 1.00 external). The AI system maintained excellent performance in limited imaging protocols, performing 15 diagnosis tasks with a median (IQR) AUC of 0.91 (0.87-0.94) in an abbreviated TTE cohort and 14 tasks with a median (IQR) AUC of 0.85 (0.77-0.87) on real-world point-of-care ultrasonography acquisitions from YNHHS emergency departments.
In this study, an AI system that automatically interprets echocardiograms maintained high accuracy across geography and time from complete and limited studies. This AI system may be used as an adjunct reader in echocardiography laboratories or AI-enabled screening tool in point-of-care settings following prospective evaluation in the respective clinical workflows.
超声心动图是心血管护理的基石,但依赖于专家解读以及对一系列视频的人工报告。已提出一种人工智能(AI)系统PanEcho,通过多任务深度学习实现超声心动图解读自动化。
开发并评估一种AI系统对经胸超声心动图(TTE)上39个综合标签和测量值的准确性。
设计、设置和参与者:本研究代表了一种AI系统的开发以及回顾性多中心验证。PanEcho是利用2016年1月至2022年6月在耶鲁纽黑文医疗系统(YNHHS)医院和诊所进行的常规护理期间的TTE研究开发的。该模型在2022年7月至12月一个时间上不同的YNHHS队列中进行了内部验证,在4个不同的外部队列中进行了外部验证,并公开发布。
主要结局是诊断分类任务的受试者操作特征曲线下面积(AUC)以及参数估计任务的平均绝对误差,将AI预测结果与解读心脏病专家的评估结果进行比较。
本研究纳入了来自YNHHS医院和诊所24405例患者的32265项TTE研究中的120万个超声心动图视频。在内部验证中,AI系统执行了18项诊断分类任务,中位数(IQR)AUC为0.91(0.88 - 0.93),估计了21个超声心动图参数,中位数(IQR)标准化平均绝对误差为0.13(0.10 - 0.18)。例如,该模型准确估计了左心室射血分数(内部平均绝对误差:4.2%;外部4.5%),并检测到中度或更严重的左心室收缩功能障碍(AUC:内部0.98;外部0.99)、右心室收缩功能障碍(AUC:内部0.93;外部0.94)和严重主动脉瓣狭窄(AUC:内部0.98;外部1.00)。AI系统在有限的成像方案中保持了出色的性能,在缩短的TTE队列中执行了15项诊断任务,中位数(IQR)AUC为0.91(0.87 - 0.94),在YNHHS急诊科的现场即时超声心动图采集中执行了14项任务,中位数(IQR)AUC为0.85(0.77 - 0.87)。
在本研究中,一个自动解读超声心动图的AI系统在完整和有限的研究中跨地域和时间保持了高精度。在各自的临床工作流程中进行前瞻性评估后,这个AI系统可在超声心动图实验室用作辅助解读工具,或在现场即时护理环境中用作基于AI的筛查工具。