Suppr超能文献

微生物环对表层海洋变暖的生态进化响应及其对初级生产力的影响。

Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production.

机构信息

Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, Paris, 75005, France.

Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.

出版信息

ISME J. 2022 Apr;16(4):1130-1139. doi: 10.1038/s41396-021-01166-8. Epub 2021 Dec 4.

Abstract

Predicting the response of ocean primary production to climate warming is a major challenge. One key control of primary production is the microbial loop driven by heterotrophic bacteria, yet how warming alters the microbial loop and its function is poorly understood. Here we develop an eco-evolutionary model to predict the physiological response and adaptation through selection of bacterial populations in the microbial loop and how this will impact ecosystem function such as primary production. We find that the ecophysiological response of primary production to warming is driven by a decrease in regenerated production which depends on nutrient availability. In nutrient-poor environments, the loss of regenerated production to warming is due to decreasing microbial loop activity. However, this ecophysiological response can be opposed or even reversed by bacterial adaptation through selection, especially in cold environments: heterotrophic bacteria with lower bacterial growth efficiency are selected, which strengthens the "link" behavior of the microbial loop, increasing both new and regenerated production. In cold and rich environments such as the Arctic Ocean, the effect of bacterial adaptation on primary production exceeds the ecophysiological response. Accounting for bacterial adaptation through selection is thus critically needed to improve models and projections of the ocean primary production in a warming world.

摘要

预测海洋初级生产力对气候变暖的响应是一个主要挑战。初级生产的一个关键控制因素是由异养细菌驱动的微生物环,但变暖如何改变微生物环及其功能还知之甚少。在这里,我们开发了一个生态进化模型,以预测通过选择微生物环中的细菌种群的生理响应和适应,以及这将如何影响生态系统功能,如初级生产。我们发现,初级生产对变暖的生理生态响应是由再生生产的减少驱动的,这取决于养分的可用性。在营养贫瘠的环境中,由于微生物环活性的降低,再生生产的损失导致变暖。然而,这种生理生态响应可以通过细菌适应通过选择来对抗甚至逆转,特别是在寒冷的环境中:选择具有较低细菌生长效率的异养细菌,这加强了微生物环的“链接”行为,增加了新的和再生的生产。在寒冷和富营养的环境中,如北冰洋,细菌适应对初级生产的影响超过生理生态响应。因此,通过选择考虑细菌适应对于改善模型和预测变暖世界中的海洋初级生产力至关重要。

相似文献

6
Impacts of global warming on marine microbial communities.全球变暖对海洋微生物群落的影响。
Sci Total Environ. 2021 Oct 15;791:147905. doi: 10.1016/j.scitotenv.2021.147905. Epub 2021 May 21.

本文引用的文献

2
Trait-based approach to bacterial growth efficiency.基于特征的细菌生长效率研究方法。
Environ Microbiol. 2020 Aug;22(8):3494-3504. doi: 10.1111/1462-2920.15120. Epub 2020 Jun 28.
3
Microbial evolutionary strategies in a dynamic ocean.动态海洋中的微生物进化策略。
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5943-5948. doi: 10.1073/pnas.1919332117. Epub 2020 Mar 2.
6
Scientists' warning to humanity: microorganisms and climate change.科学家对人类的警告:微生物和气候变化。
Nat Rev Microbiol. 2019 Sep;17(9):569-586. doi: 10.1038/s41579-019-0222-5. Epub 2019 Jun 18.
7
Marine DNA Viral Macro- and Microdiversity from Pole to Pole.从极地到极地的海洋 DNA 病毒宏多样性和微多样性。
Cell. 2019 May 16;177(5):1109-1123.e14. doi: 10.1016/j.cell.2019.03.040. Epub 2019 Apr 25.
8
Adaptive Evolution within Gut Microbiomes of Healthy People.健康人群肠道微生物组中的适应性进化。
Cell Host Microbe. 2019 May 8;25(5):656-667.e8. doi: 10.1016/j.chom.2019.03.007. Epub 2019 Apr 23.
9
Phytoplankton adaptation in ecosystem models.浮游植物对生态系统模型的适应。
J Theor Biol. 2019 May 7;468:60-71. doi: 10.1016/j.jtbi.2019.01.041. Epub 2019 Feb 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验