Suppr超能文献

基于推断的 All of Us 研究计划中多站点身高和体重测量数据的校正。

Inference-based correction of multi-site height and weight measurement data in the All of Us research program.

机构信息

Geriatric Research Education and Clinical Center (GRECC), Tennessee Valley Health System Veterans Administration Medical Center, Nashville, Tennessee, USA.

Division of General Internal Medicine and Public Health, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

J Am Med Inform Assoc. 2022 Mar 15;29(4):626-630. doi: 10.1093/jamia/ocab251.

Abstract

OBJECTIVE

Measurement and data entry of height and weight values are error prone. Aggregation of medical record data from multiple sites creates new challenges prompting the need to identify and correct errant values. We sought to characterize and correct issues with height and weight measurement values within the All of Us (AoU) Research Program.

MATERIALS AND METHODS

Using the AoU Researcher Workbench, we assessed site-level measurement value distributions to infer unit types. We also used plausibility checks with exceptions for conditions with possible outlier values, eg obesity, and assessed for excess deviation within individual participant's records.

RESULTS

15.8% of height and 22.4% of weight values had missing unit type information.

DISCUSSION

We identified several measurement unit related issues: the use of different units of measure within and between sites, missing units, and incorrect labeling of units. Failure to account for these in patient data repositories may lead to erroneous study results and conclusions.

CONCLUSION

Discrepancies in height and weight measurement data may arise from missing or mislabeled units. Using site- and participant-level analyses while accounting for outlier value-associated clinical conditions, we can infer measurement units and apply corrections. These methods are adaptable and expandable within AoU and other data repositories.

摘要

目的

身高和体重值的测量和录入容易出错。从多个站点聚合医疗记录数据会带来新的挑战,需要识别和纠正错误值。我们试图描述和纠正 All of Us(AoU)研究计划中身高和体重测量值的问题。

材料和方法

使用 AoU 研究人员工作台,我们评估了站点级别的测量值分布,以推断单位类型。我们还使用异常值的可能性检查,例如肥胖,并评估了个体参与者记录中的过量偏差。

结果

身高值的 15.8%和体重值的 22.4%缺少单位类型信息。

讨论

我们发现了一些与测量单位相关的问题:在站点内和站点之间使用不同的度量单位、缺少单位和单位标签错误。如果在患者数据存储库中不考虑这些问题,可能会导致错误的研究结果和结论。

结论

身高和体重测量数据的差异可能是由于缺少或标记错误的单位造成的。使用站点和参与者级别的分析,并考虑与异常值相关的临床情况,可以推断测量单位并应用纠正措施。这些方法在 AoU 和其他数据存储库中是可适应和可扩展的。

相似文献

引用本文的文献

本文引用的文献

1
The Research Program: Data quality, utility, and diversity.研究计划:数据质量、效用和多样性。
Patterns (N Y). 2022 Aug 12;3(8):100570. doi: 10.1016/j.patter.2022.100570.
3
The "All of Us" Research Program.“All of Us”研究计划。
N Engl J Med. 2019 Aug 15;381(7):668-676. doi: 10.1056/NEJMsr1809937.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验