IEEE J Biomed Health Inform. 2023 Jun;27(6):3014-3025. doi: 10.1109/JBHI.2023.3259395. Epub 2023 Jun 5.
Healthcare artificial intelligence (AI) holds the potential to increase patient safety, augment efficiency and improve patient outcomes, yet research is often limited by data access, cohort curation, and tools for analysis. Collection and translation of electronic health record data, live data, and real-time high-resolution device data can be challenging and time-consuming. The development of clinically relevant AI tools requires overcoming challenges in data acquisition, scarce hospital resources, and requirements for data governance. These bottlenecks may result in resource-heavy needs and long delays in research and development of AI systems. We present a system and methodology to accelerate data acquisition, dataset development and analysis, and AI model development. We created an interactive platform that relies on a scalable microservice architecture. This system can ingest 15,000 patient records per hour, where each record represents thousands of multimodal measurements, text notes, and high-resolution data. Collectively, these records can approach a terabyte of data. The platform can further perform cohort generation and preliminary dataset analysis in 2-5 minutes. As a result, multiple users can collaborate simultaneously to iterate on datasets and models in real time. We anticipate that this approach will accelerate clinical AI model development, and, in the long run, meaningfully improve healthcare delivery.
医疗人工智能(AI)有潜力提高患者安全性、提高效率和改善患者预后,但研究往往受到数据访问、队列管理和分析工具的限制。收集和翻译电子健康记录数据、实时数据和实时高分辨率设备数据可能具有挑战性且耗时。开发与临床相关的 AI 工具需要克服数据采集、医院资源稀缺以及数据治理要求方面的挑战。这些瓶颈可能导致 AI 系统的研究和开发需要大量资源且延迟时间长。我们提出了一种系统和方法来加速数据采集、数据集开发和分析以及 AI 模型开发。我们创建了一个依赖可扩展微服务架构的交互式平台。该系统每小时可摄取 15000 个患者记录,每个记录代表数千种多模态测量值、文本注释和高分辨率数据。这些记录加起来可以接近 1000GB 的数据。该平台可以在 2-5 分钟内进一步进行队列生成和初步数据集分析。因此,多个用户可以实时协作对数据集和模型进行迭代。我们预计这种方法将加速临床 AI 模型的开发,并从长远来看,将显著改善医疗服务的提供。