CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China.
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
Adv Mater. 2022 Mar;34(12):e2108567. doi: 10.1002/adma.202108567. Epub 2022 Feb 9.
High-performance droplet transport is crucial for diverse applications including biomedical detection, chemical micro-reaction, and droplet microfluidics. Despite extensive progress, traditional passive and active strategies are restricted to limited liquid types, small droplet volume ranges, and poor biocompatibilities. Moreover, more challenges occur for biological fluids due to large viscosity and low surface tension. Here, a vibration-actuated omni-droplets rectifier (VAODR) consisting of slippery ratchet arrays fabricated by femtosecond laser and vibration platforms is reported. Through the relative competition between the asymmetric adhesive resistance originating from the lubricant meniscus on the VAODR and the periodic inertial driving force originating from isotropic vibration, the fast (up to ≈60 mm s ), programmable, and robust transport of droplets is achieved for a large volume range (0.05-2000 µL, V /V ≈ 40 000) and in various transport modes including transport of liquid slugs in tubes, programmable and sequential transport, and bidirectional transport. This VAODR is general to a high diversity of biological and medical fluids, and thus can be used for biomedical detection including ABO blood-group tests and anticancer drugs screening. These strategies provide a complementary and promising platform for maneuvering omni-droplets that are fundamental to biomedical applications and other high-throughput omni-droplet operation fields.
高性能液滴传输对于包括生物医学检测、化学微反应和液滴微流控在内的多种应用至关重要。尽管已经取得了广泛的进展,但传统的被动和主动策略仅限于有限的液体类型、小液滴体积范围和较差的生物相容性。此外,由于生物流体的粘度较大和表面张力较低,还会出现更多的挑战。在这里,我们报道了一种由飞秒激光和振动平台制造的滑动棘轮阵列组成的振动驱动全向液滴整流器(VAODR)。通过 VAODR 上的润滑剂弯月面产生的不对称粘附阻力与各向同性振动产生的周期性惯性驱动力之间的相对竞争,实现了快速(高达 ≈60 mm s)、可编程和稳健的液滴传输,传输体积范围大(0.05-2000 μL,V / V ≈ 40 000),并且可以在各种传输模式下进行传输,包括管内液体段的传输、可编程和顺序传输以及双向传输。这种 VAODR 适用于多种生物和医学流体,因此可用于包括 ABO 血型测试和抗癌药物筛选在内的生物医学检测。这些策略为操纵全向液滴提供了一个互补且有前景的平台,这对于生物医学应用和其他高通量全向液滴操作领域至关重要。