Wang Yifei, Tancredi Daniel J, Miglioretti Diana L
Phili R. Lee Institute for Health Policy Studies, University of California, San Francisco, California.
Department of Statistics, University of California, Davis, California.
Stat Med. 2022 Feb 10;41(3):554-566. doi: 10.1002/sim.9272. Epub 2021 Dec 5.
A method was introduced in 2018 of performing indirect standardization for hospital profiling when only the marginal distributions of confounding variables are observed for the index hospital but the full joint covariate distribution is available for the reference hospitals (Wang et al, J Am Stat Assoc 2018; 114:662-630). The method constructs a synthetic comparison hospital using a weighted combination of reference hospitals, with weights assumed to follow a Dirichlet distribution with equal concentration parameters. In this article, we propose a novel method that improves upon the approach in a previous study (Wang et al, J Am Stat Assoc 2018; 114:662-630), by assuming the existence of latent classes among reference hospitals to allow for unequal Dirichlet concentration parameters. The latent class memberships, and thus the hospital weights, are informed by hospital-level characteristics. Our new method results in less biased point estimates and narrower uncertainty intervals for the standardized incidence ratio compared with the existing approach. We show the superiority of our novel methods in an application to a study on prevalence of high-radiation computed tomography exams, as well as in a simulation of the same medical context.
2018年引入了一种在医院概况分析中进行间接标准化的方法,该方法适用于以下情况:对于指标医院,仅观察到混杂变量的边际分布,但对于参照医院,可获得完整的联合协变量分布(Wang等人,《美国统计协会杂志》2018年;114:662 - 630)。该方法使用参照医院的加权组合构建一个综合比较医院,权重假定遵循具有相等浓度参数的狄利克雷分布。在本文中,我们提出了一种新颖的方法,该方法改进了先前研究(Wang等人,《美国统计协会杂志》2018年;114:662 - 630)中的方法,通过假定参照医院中存在潜在类别,以允许狄利克雷浓度参数不相等。潜在类别成员身份以及医院权重由医院层面的特征决定。与现有方法相比,我们的新方法在标准化发病率比方面产生的点估计偏差更小,不确定性区间更窄。我们在一项关于高辐射计算机断层扫描检查患病率的研究应用中以及在相同医疗背景的模拟中展示了我们新颖方法的优越性。