Suppr超能文献

具有狄利克雷混合分布的多级潜在类别模型

Multilevel latent class models with dirichlet mixing distribution.

作者信息

Di Chong-Zhi, Bandeen-Roche Karen

机构信息

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, M2-B500, Seattle, Washington 98109, USA.

出版信息

Biometrics. 2011 Mar;67(1):86-96. doi: 10.1111/j.1541-0420.2010.01448.x.

Abstract

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social science and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this article, we consider multilevel latent class models, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the expectation-maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less-efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the obsessive compulsive disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for LCA of multilevel data.

摘要

潜在类别分析(LCA)和潜在类别回归(LCR)在社会科学和生物医学研究中被广泛用于对多变量分类结果进行建模。标准分析假定不同受访者的数据相互独立,这使得这些方法无法应用于家庭研究和其他参与者存在聚类的设计。在本文中,我们考虑多级潜在类别模型,其中亚群体混合概率被视为随机效应,这些随机效应根据共同的狄利克雷分布在聚类之间变化。我们应用期望最大化(EM)算法通过最大似然(ML)进行模型拟合。这种方法效果良好,但当类别数量或聚类规模较大时计算量很大。针对这种情况,我们通过改进的EM算法提出了一种最大成对似然(MPL)方法。我们还表明,简单的潜在类别分析与稳健标准误差相结合,提供了另一种一致、稳健但效率较低的推断程序。模拟研究表明,这三种方法在有限样本中效果良好,并且MPL估计通常与ML估计具有相当的精度。我们将我们的方法应用于强迫症研究中共病症状的分析。我们模型的随机效应结构比竞争方法的结构具有更直接的解释,因此应该能有效地扩充可用于多级数据LCA的工具。

相似文献

1
Multilevel latent class models with dirichlet mixing distribution.
Biometrics. 2011 Mar;67(1):86-96. doi: 10.1111/j.1541-0420.2010.01448.x.
3
A general approach for two-stage analysis of multilevel clustered non-Gaussian data.
Biometrics. 2006 Sep;62(3):752-9. doi: 10.1111/j.1541-0420.2005.00512.x.
4
A latent model to detect multiple clusters of varying sizes.
Biometrics. 2009 Dec;65(4):1011-20. doi: 10.1111/j.1541-0420.2009.01197.x.
5
Likelihood methods for binary responses of present components in a cluster.
Biometrics. 2011 Jun;67(2):629-35. doi: 10.1111/j.1541-0420.2010.01483.x. Epub 2010 Sep 3.
6
A joint model for longitudinal measurements and survival data in the presence of multiple failure types.
Biometrics. 2008 Sep;64(3):762-771. doi: 10.1111/j.1541-0420.2007.00952.x. Epub 2007 Dec 20.
7
Mixtures of multivariate power exponential distributions.
Biometrics. 2015 Dec;71(4):1081-9. doi: 10.1111/biom.12351. Epub 2015 Jul 1.
8
A penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation.
Biometrics. 2014 Jun;70(2):312-22. doi: 10.1111/biom.12149. Epub 2014 Jan 28.
9
Analyzing spatially distributed binary data using independent-block estimating equations.
Biometrics. 2007 Sep;63(3):892-900. doi: 10.1111/j.1541-0420.2007.00754.x. Epub 2007 Feb 9.
10
Hidden Markov latent variable models with multivariate longitudinal data.
Biometrics. 2017 Mar;73(1):313-323. doi: 10.1111/biom.12536. Epub 2016 May 5.

引用本文的文献

1
Recommendations on the Sample Sizes for Multilevel Latent Class Models.
Educ Psychol Meas. 2018 Oct;78(5):737-761. doi: 10.1177/0013164417719111. Epub 2017 Jul 9.
2
The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models.
Educ Psychol Meas. 2016 Oct;76(5):824-847. doi: 10.1177/0013164415618240. Epub 2015 Nov 26.

本文引用的文献

1
Mixed-Effects Logistic Regression Models for Indirectly Observed Discrete Outcome Variables.
Multivariate Behav Res. 2005;40(3):281-301. doi: 10.1207/s15327906mbr4003_1.
2
Latent class and finite mixture models for multilevel data sets.
Stat Methods Med Res. 2008 Feb;17(1):33-51. doi: 10.1177/0962280207081238. Epub 2007 Sep 13.
3
The identification of OCD-related subgroups based on comorbidity.
Biol Psychiatry. 2003 May 15;53(10):914-20. doi: 10.1016/s0006-3223(02)01677-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验