Suppr超能文献

具有生存比例的多变量失效时间数据的边际回归模型。

A marginal regression model for multivariate failure time data with a surviving fraction.

作者信息

Peng Yingwei, Taylor Jeremy M G, Yu Binbing

机构信息

Department of Community Health and Epidemiology, Queen's University, Kingston, ON, Canada.

出版信息

Lifetime Data Anal. 2007 Sep;13(3):351-69. doi: 10.1007/s10985-007-9042-4. Epub 2007 Jul 20.

Abstract

A marginal regression approach for correlated censored survival data has become a widely used statistical method. Examples of this approach in survival analysis include from the early work by Wei et al. (J Am Stat Assoc 84:1065-1073, 1989) to more recent work by Spiekerman and Lin (J Am Stat Assoc 93:1164-1175, 1998). This approach is particularly useful if a covariate's population average effect is of primary interest and the correlation structure is not of interest or cannot be appropriately specified due to lack of sufficient information. In this paper, we consider a semiparametric marginal proportional hazard mixture cure model for clustered survival data with a surviving or "cure" fraction. Unlike the clustered data in previous work, the latent binary cure statuses of patients in one cluster tend to be correlated in addition to the possible correlated failure times among the patients in the cluster who are not cured. The complexity of specifying appropriate correlation structures for the data becomes even worse if the potential correlation between cure statuses and the failure times in the cluster has to be considered, and thus a marginal regression approach is particularly attractive. We formulate a semiparametric marginal proportional hazards mixture cure model. Estimates are obtained using an EM algorithm and expressions for the variance-covariance are derived using sandwich estimators. Simulation studies are conducted to assess finite sample properties of the proposed model. The marginal model is applied to a multi-institutional study of local recurrences of tonsil cancer patients who received radiation therapy. It reveals new findings that are not available from previous analyses of this study that ignored the potential correlation between patients within the same institution.

摘要

一种用于相关删失生存数据的边际回归方法已成为一种广泛使用的统计方法。这种方法在生存分析中的例子包括从Wei等人早期的工作(《美国统计协会杂志》84:1065 - 1073, 1989)到Spiekerman和Lin最近的工作(《美国统计协会杂志》93:1164 - 1175, 1998)。如果协变量的总体平均效应是主要关注点,并且相关结构不被关注或由于缺乏足够信息而无法适当指定,那么这种方法特别有用。在本文中,我们考虑一种用于具有生存或“治愈”比例的聚类生存数据的半参数边际比例风险混合治愈模型。与先前工作中的聚类数据不同,除了聚类中未治愈患者之间可能的相关失效时间外,一个聚类中患者的潜在二元治愈状态往往也相互关联。如果必须考虑聚类中治愈状态与失效时间之间的潜在相关性,那么为数据指定适当相关结构的复杂性会变得更糟,因此边际回归方法特别有吸引力。我们构建了一个半参数边际比例风险混合治愈模型。使用期望最大化(EM)算法获得估计值,并使用三明治估计器推导方差 - 协方差的表达式。进行模拟研究以评估所提出模型的有限样本性质。将边际模型应用于一项对接受放射治疗的扁桃体癌患者局部复发的多机构研究。它揭示了一些新发现,这些发现是以前对该研究的分析所没有的,以前的分析忽略了同一机构内患者之间的潜在相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验