Suppr超能文献

将谷氨酸能神经元和儿科高级别神经胶质瘤细胞共培养到微流控装置中以评估电相互作用。

Co-culture of Glutamatergic Neurons and Pediatric High-Grade Glioma Cells Into Microfluidic Devices to Assess Electrical Interactions.

机构信息

Team Tumoral signaling and therapeutic targets, UMR CNRS 7021 - Laboratory of Bioimaging and Pathologies.

NETRI.

出版信息

J Vis Exp. 2021 Nov 17(177). doi: 10.3791/62748.

Abstract

Pediatric high-grade gliomas (pHGG) represent childhood and adolescent brain cancers that carry a rapid dismal prognosis. Since there is a need to overcome the resistance to current treatments and find a new way of cure, modeling the disease as close as possible in an in vitro setting to test new drugs and therapeutic procedures is highly demanding. Studying their fundamental pathobiological processes, including glutamatergic neuron hyperexcitability, will be a real advance in understanding interactions between the environmental brain and pHGG cells. Therefore, to recreate neurons/pHGG cell interactions, this work shows the development of a functional in vitro model co-culturing human-induced Pluripotent Stem (hiPS)-derived cortical glutamatergic neurons pHGG cells into compartmentalized microfluidic devices and a process to record their electrophysiological modifications. The first step was to differentiate and characterize human glutamatergic neurons. Secondly, the cells were cultured in microfluidic devices with pHGG derived cell lines. Brain microenvironment and neuronal activity were then included in this model to analyze the electrical impact of pHGG cells on these micro-environmental neurons. Electrophysiological recordings are coupled using multielectrode arrays (MEA) to these microfluidic devices to mimic physiological conditions and to record the electrical activity of the entire neural network. A significant increase in neuron excitability was underlined in the presence of tumor cells.

摘要

儿科高级别神经胶质瘤(pHGG)是儿童和青少年脑癌,预后迅速恶化。由于需要克服对现有治疗方法的耐药性并寻找新的治疗方法,因此尽可能在体外环境中模拟疾病以测试新药和治疗程序的需求非常高。研究其基本的病理生物学过程,包括谷氨酸能神经元过度兴奋,将是理解环境脑与 pHGG 细胞之间相互作用的真正进展。因此,为了重现神经元/pHGG 细胞相互作用,这项工作展示了一种功能体外模型的开发,该模型将人类诱导多能干细胞(hiPS)衍生的皮质谷氨酸能神经元 pHGG 细胞共培养到分室微流控装置中,并记录其电生理变化的过程。第一步是分化和表征人类谷氨酸能神经元。其次,将细胞培养在具有 pHGG 衍生细胞系的微流控装置中。然后将脑微环境和神经元活动纳入该模型,以分析 pHGG 细胞对这些微环境神经元的电影响。使用多电极阵列(MEA)将电生理记录与这些微流控装置耦合,以模拟生理条件并记录整个神经网络的电活动。在存在肿瘤细胞的情况下,神经元兴奋性显著增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验