Kirk Molly J, Benlian Brittany R, Han Yifu, Gold Arya, Ravi Ashvin, Deal Parker E, Molina Rosana S, Drobizhev Mikhail, Dickman Dion, Scott Kristin, Miller Evan W
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States.
Department of Neurobiology, University of Southern California, Los Angeles, CA, United States.
Front Neurosci. 2021 Nov 16;15:754027. doi: 10.3389/fnins.2021.754027. eCollection 2021.
We combine a chemically-synthesized, voltage-sensitive fluorophore with a genetically encoded, self-labeling enzyme to enable voltage imaging in . Previously, we showed that a rhodamine voltage reporter (RhoVR) combined with the HaloTag self-labeling enzyme could be used to monitor membrane potential changes from mammalian neurons in culture and brain slice. Here, we apply this hybrid RhoVR-Halo approach to achieve selective neuron labeling in intact fly brains. We generate a UAS-HaloTag reporter line in which the HaloTag enzyme is expressed on the surface of cells. We validate the voltage sensitivity of this new construct in cell culture before driving expression of HaloTag in specific brain neurons in flies. We show that selective labeling of synapses, cells, and brain regions can be achieved with RhoVR-Halo in either larval neuromuscular junction (NMJ) or in whole adult brains. Finally, we validate the voltage sensitivity of RhoVR-Halo in fly tissue dual-electrode/imaging at the NMJ, show the efficacy of this approach for measuring synaptic excitatory post-synaptic potentials (EPSPs) in muscle cells, and perform voltage imaging of carbachol-evoked depolarization and osmolarity-evoked hyperpolarization in projection neurons and in interoceptive subesophageal zone neurons in fly brain explants following labeling. We envision the turn-on response to depolarizations, fast response kinetics, and two-photon compatibility of chemical indicators, coupled with the cellular and synaptic specificity of genetically-encoded enzymes, will make RhoVR-Halo a powerful complement to neurobiological imaging in .
我们将一种化学合成的电压敏感荧光团与一种基因编码的自标记酶相结合,以实现[具体生物体系]中的电压成像。此前,我们表明,若丹明电压报告基因(RhoVR)与HaloTag自标记酶相结合,可用于监测培养的哺乳动物神经元和脑片中的膜电位变化。在此,我们应用这种RhoVR-Halo混合方法在完整的果蝇大脑中实现选择性神经元标记。我们构建了一个UAS-HaloTag报告基因系,其中HaloTag酶在细胞表面表达。在驱动果蝇特定脑神经元中HaloTag表达之前,我们在细胞培养中验证了这种新构建体的电压敏感性。我们表明,无论是在幼虫神经肌肉接头(NMJ)还是在整个成年果蝇大脑中,RhoVR-Halo都能实现对突触、细胞和脑区的选择性标记。最后,我们在NMJ处通过双电极/成像验证了果蝇组织中RhoVR-Halo的电压敏感性,展示了该方法在测量肌肉细胞中突触兴奋性突触后电位(EPSP)方面的有效性,并在标记后对果蝇脑外植体中的投射神经元和内感受性咽下神经节神经元进行了卡巴胆碱诱发的去极化和渗透压诱发的超极化的电压成像。我们设想,对去极化的开启响应、快速的响应动力学以及化学指示剂的双光子兼容性,再加上基因编码酶的细胞和突触特异性,将使RhoVR-Halo成为[具体生物体系]神经生物学成像的有力补充。