Suppr超能文献

使用元数据学习方法的磁共振成像序列识别

Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach.

作者信息

Liang Shuai, Beaton Derek, Arnott Stephen R, Gee Tom, Zamyadi Mojdeh, Bartha Robert, Symons Sean, MacQueen Glenda M, Hassel Stefanie, Lerch Jason P, Anagnostou Evdokia, Lam Raymond W, Frey Benicio N, Milev Roumen, Müller Daniel J, Kennedy Sidney H, Scott Christopher J M, Strother Stephen C

机构信息

Rotman Research Institute, Baycrest Health Center, Toronto, ON, Canada.

Indoc Research, Toronto, ON, Canada.

出版信息

Front Neuroinform. 2021 Nov 17;15:622951. doi: 10.3389/fninf.2021.622951. eCollection 2021.

Abstract

Despite the wide application of the magnetic resonance imaging (MRI) technique, there are no widely used standards on naming and describing MRI sequences. The absence of consistent naming conventions presents a major challenge in automating image processing since most MRI software require knowledge of the type of the MRI sequences to be processed. This issue becomes increasingly critical with the current efforts toward open-sharing of MRI data in the neuroscience community. This manuscript reports an MRI sequence detection method using imaging metadata and a supervised machine learning technique. Three datasets from the Brain Center for Ontario Data Exploration (Brain-CODE) data platform, each involving MRI data from multiple research institutes, are used to build and test our model. The preliminary results show that a random forest model can be trained to accurately identify MRI sequence types, and to recognize MRI scans that do not belong to any of the known sequence types. Therefore the proposed approach can be used to automate processing of MRI data that involves a large number of variations in sequence names, and to help standardize sequence naming in ongoing data collections. This study highlights the potential of the machine learning approaches in helping manage health data.

摘要

尽管磁共振成像(MRI)技术已得到广泛应用,但在MRI序列的命名和描述方面却没有广泛使用的标准。缺乏一致的命名约定给图像处理自动化带来了重大挑战,因为大多数MRI软件都需要了解要处理的MRI序列的类型。随着神经科学界目前在MRI数据开放共享方面所做的努力,这个问题变得越来越关键。本文报告了一种利用成像元数据和监督机器学习技术的MRI序列检测方法。来自安大略省数据探索脑中心(Brain-CODE)数据平台的三个数据集,每个数据集都包含来自多个研究机构的MRI数据,用于构建和测试我们的模型。初步结果表明,可以训练随机森林模型来准确识别MRI序列类型,并识别不属于任何已知序列类型的MRI扫描。因此,所提出的方法可用于自动化处理涉及大量序列名称变化的MRI数据,并有助于在正在进行的数据收集中规范序列命名。这项研究突出了机器学习方法在帮助管理健康数据方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f1/8635782/7871a163ff0c/fninf-15-622951-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验