Suppr超能文献

使用卷积神经网络对身体磁共振成像序列进行自动分类

Automated Classification of Body MRI Sequences Using Convolutional Neural Networks.

作者信息

Kim Boah, Mathai Tejas Sudharshan, Helm Kimberly, Mukherjee Pritam, Liu Jianfei, Summers Ronald M

机构信息

National Institutes of Health Clinical Center, Building 10 Room 1C224, Bethesda, Maryland 20892-1182, USA.

National Institutes of Health Clinical Center, Building 10 Room 1C224, Bethesda, Maryland 20892-1182, USA.

出版信息

Acad Radiol. 2025 Mar;32(3):1192-1203. doi: 10.1016/j.acra.2024.11.046. Epub 2024 Dec 6.

Abstract

RATIONALE AND OBJECTIVES

Multi-parametric MRI (mpMRI) studies of the body are routinely acquired in clinical practice. However, a standardized naming convention for MRI protocols and series does not exist currently. Conflicts in the series descriptions present in the DICOM headers arise due to myriad MRI scanners from various manufacturers used for imaging, wide variations in imaging practices across institutions, and technologist preferences. These conflicts affect the hanging protocol, which dictates the arrangement of sequences for the reading radiologist. At present, clinician supervision is necessary to ensure that the correct sequence is being read and used for diagnosis. This pilot work seeks to classify five different series in mpMRI studies acquired at the levels of the chest, abdomen, and pelvis.

MATERIALS AND METHODS

First, 2D and 3D classification networks were compared using data acquired by Siemens scanners and the optimal network was identified. Then, its performance was analyzed when trained with different training data quantities. The out-of-distribution (OOD) robustness on data acquired by a Philips scanner was also measured. In addition, the effect of data augmentation on model training was studied. The model was also tested with smaller input volumes through downsampling or cropping. Finally, the model was trained on combined data from both Siemens and Philips scanners to bridge the performance gap between different scanners.

RESULTS

Among 2D and 3D networks of ResNet-50, ResNet-101, DenseNet- 121, and EfficientNet-BN0, the 3D DenseNet-121 ensemble achieved an F score of 99.5% when tested on data from the Siemens scanners. The model performed well on OOD data from the Philips scanner and achieved an F score of 86.5%. There was no statistically significant difference between the models trained with and without data augmentation, and between the models trained with original-sized input and with smaller-sized input. When training the model with combined data, the F score improved to 98.8% for the Philips test set and 99.3% for the Siemens test set respectively.

CONCLUSION

Our pilot work is useful for the classification of MRI sequences in studies acquired at the level of the chest, abdomen, and pelvis. It has the potential for robust automation of hanging protocols and the creation of large-scale data cohorts for pre-clinical research.

摘要

原理与目的

在临床实践中,对身体进行多参数磁共振成像(mpMRI)研究是常规操作。然而,目前尚无针对MRI协议和序列的标准化命名规范。由于用于成像的MRI扫描仪来自不同制造商,机构间成像实践差异很大,以及技术人员的偏好,导致DICOM头文件中的序列描述存在冲突。这些冲突影响了挂片协议,而挂片协议决定了阅片放射科医生的序列排列。目前,需要临床医生监督以确保读取并使用正确的序列进行诊断。这项试点工作旨在对在胸部、腹部和骨盆水平获取的mpMRI研究中的五个不同序列进行分类。

材料与方法

首先,使用西门子扫描仪获取的数据比较二维和三维分类网络,并确定最佳网络。然后,分析在使用不同数量训练数据进行训练时其性能。还测量了在飞利浦扫描仪获取的数据上的分布外(OOD)鲁棒性。此外,研究了数据增强对模型训练的影响。通过下采样或裁剪,使用较小的输入体积对模型进行测试。最后,在来自西门子和飞利浦扫描仪的组合数据上训练模型,以弥合不同扫描仪之间的性能差距。

结果

在ResNet - 50、ResNet - 101、DenseNet - 121和EfficientNet - BN0的二维和三维网络中,三维DenseNet - 121集成模型在西门子扫描仪数据上测试时F分数达到99.5%。该模型在飞利浦扫描仪的分布外数据上表现良好,F分数达到86.5%。在使用和不使用数据增强训练的模型之间,以及在使用原始大小输入和较小大小输入训练的模型之间,没有统计学上的显著差异。当使用组合数据训练模型时,飞利浦测试集的F分数分别提高到98.8%,西门子测试集的F分数提高到99.3%。

结论

我们的试点工作有助于对在胸部、腹部和骨盆水平获取的研究中的MRI序列进行分类。它具有实现挂片协议强大自动化以及为临床前研究创建大规模数据群组的潜力。

相似文献

3
Classification of Multi-Parametric Body MRI Series Using Deep Learning.基于深度学习的多参数体部 MRI 序列分类。
IEEE J Biomed Health Inform. 2024 Nov;28(11):6791-6802. doi: 10.1109/JBHI.2024.3448373. Epub 2024 Nov 6.
5
Detection of abdominopelvic lymph nodes in multi-parametric MRI.多参数 MRI 中腹盆淋巴结的检测。
Comput Med Imaging Graph. 2024 Jun;114:102363. doi: 10.1016/j.compmedimag.2024.102363. Epub 2024 Mar 1.

本文引用的文献

1
Classification of Multi-Parametric Body MRI Series Using Deep Learning.基于深度学习的多参数体部 MRI 序列分类。
IEEE J Biomed Health Inform. 2024 Nov;28(11):6791-6802. doi: 10.1109/JBHI.2024.3448373. Epub 2024 Nov 6.
3
6
3D Pyramid Pooling Network for Abdominal MRI Series Classification.三维金字塔池化网络在腹部 MRI 序列分类中的应用。
IEEE Trans Pattern Anal Mach Intell. 2022 Apr;44(4):1688-1698. doi: 10.1109/TPAMI.2020.3033990. Epub 2022 Mar 4.
7
Does image normalization and intensity resolution impact texture classification?图像归一化和强度分辨率是否会影响纹理分类?
Comput Med Imaging Graph. 2020 Apr;81:101716. doi: 10.1016/j.compmedimag.2020.101716. Epub 2020 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验